| [1] | 欧阳颀. 反应扩散系统中的斑图动力学. 上海: 上海科技教育出版社, 2000 | | [1] | Ou Y X. Turing Dynamics in Reaction Diffusion Systems. Shanghai: Shanghai Science and Technology Education Press, 2000 | | [2] | Gierer A, Meinhardt H. A theory of biological pattern formation. Kybernetik, 1972, 12: 30-39 | | [3] | Gierer A, Meinhardt H. Application of a theory of biological pattern formation based on lateral inhibition. J Cell Sci, 1974, 15(2): 321-346 | | [4] | Gierer A, Meinhardt H. Generation and regeneration of sequence of structures during morphogenesis. J Theor Biol, 1980, 3: 429-450 | | [5] | Wei J C, Winter M. Spikes for the Gierer-Meinhardt system in two dimensions: The strong coupling case. J Differ Equ, 2002, 178(2): 478-518 | | [6] | Ni W M, Suzuki K, Takagi I. The dynamics of a kinetic activator-inhibitor system. J Differ Equ, 2006, 229(2): 426-465 | | [7] | Takashi M, Maini P K. Speed of pattern appearance in reaction-diffusion models: Implications in the pattern formation of limb bud mesenchyme cells. Bull Math Biol, 2004, 66(4): 627-649 | | [8] | Gonpot P, Collet J S A J, Sookia N U H. Gierer-Meinhardt model: Bifurcation analysis and pattern formation. Trends Appl Sci Res, 2008, 3: 115-128 | | [9] | Yang R, Song Y L. Spatial resonance and Turing-Hopf bifurcations in the Gierer-Meinhardt model. Nonlinear Anal: Real World Appl, 2016, 31: 356-387 | | [10] | 杨文彬, 吴建华. 空间齐次和非齐次下活化-抑制模型动力学分析. 数学物理学报, 2017, 37A(22): 390-400 | | [10] | Yang W B, Wu J H. Dynamics analysis of activation-inhibition models under spatial homogeneous and heterogeneou. Acta Math Sci, 2017, 37A(22): 390-400 | | [11] | Liu J X, Yi F Q, Wei J J. Multiple bifurcation analysis and spatiotemporal patterns in a $1$-D Gierer-Meinhardt model of morphogenesis. Int J Bifurcat Chaos, 2010, 20(4): 1007-1025 | | [12] | Wang J L, Hou X J, Jing Z J. Stripe and spot patterns in a Gierer Meinhardt activator-inhibitor model with different sources. Int J Bifurcat Chaos, 2015, 25(8): 108-155 | | [13] | Wang J F, Wei J J, Shi J P. Global bifurcation analysis and pattern formation in homogeneous diffusive predator-prey systems. J Diff Equ, 2016, 260(4): 3495-3523 | | [14] | 叶其孝, 李正元, 王明新, 吴雅萍. 反应扩散方程引论. 北京: 科学出版社, 2011 | | [14] | Ye Q X, Li Z Y, Wang M X, Wu Y P. Introduction to Reaction-Diffusion Equations. Beijing: Science Press, 2011 | | [15] | Yi F Q, Wei J J, Shi J P. Diffusion-Driven instability and bifurcation in the Lengyel-Epstein system. Nonlinear Anal: Real World Appl, 2008, 9(3): 1038-1051 | | [16] | Galkhar S, Negi K, Sahani S K. Effects of seasonal growth on ratio dependent delayed prey predator system. Commun Nonlinear Sci Numer Simul, 2009, 14(3): 850-862 | | [17] | Guan X N, Wang W M, Cai Y L. Spatiotemporal dynamics of a leslie-gower predator-prey model incorporating a prey refuge. Nonlinear Anal: Real World Appl, 2011, 12(4): 2385-2395 | | [18] | Lee S S, Gaffney E A, Monk N A M. The influence of gene expression time delays on Gierer-Meinhardt pattern formation systems. Bull Math Biol, 2010, 72(8): 2139-2160 | | [19] | Dutta S, Ray D S. Effects of delay in a reaction-diffusion system under the influence of an electric field. Phys Rev E, 2008, 77(3): 036202 | | [20] | Ghosh P. Control of the Hopf-turing transition by time-delayed global feedback in a reaction-diffusion System. Phys Rev E, 2011, 84: 016222 | | [21] | Ghosh P, Sen S, Ray D S. Reaction-Cattaneo systems with fluctuating relaxation time. Phys Rev E, 2010, 81(2): 026205 | | [22] | Kyrychko Y, Blyuss K B, Hogan S J, et al. Control of spatiotemporal patterns in the Gray-Scott model. Chaos, 2009, 19(4): 043126 | | [23] | Sen S, Ghosh P, Syed S, et al. Time-Delay-Induced instabilities in reaction diffusion systems. Phys Rev E, 2008, 80(4): 046212 | | [24] | Suleiman A L. Stability analysis of the Gierer-Meinhardt system with activator degradation. Dutse J Pure Appl Sci, 2016, 2(1): 48-54 | | [25] | Li C C, Guo S J. Stability and bifurcation of a delayed reaction-diffusion model with robin boundary condition in heterogeneous environment. Int J Bifurcat Chaos, 2023, 33(2): 2350018 | | [26] | Wen T T, Wang X L, Zhang G H. Hopf bifurcation in a two-species reaction-diffusion-advection competitive model with nonlocal delay. Commun Pur Appl Anal, 2023, 22(5): 1517-1544 | | [27] | Ma L, Wei D. Hopf bifurcation of a delayed reaction-diffusion model with advection term. Nonlinear Anal: An Inter Mult J, 2021, 212(2): 112455 | | [28] | 王雅迪, 袁海龙. 一类具有时滞的营养-微生物扩散模型的 Hopf 分支研究. 西南师范大学学报(自然科学版), 2023, 48(5): 1-13 | | [28] | Wang Y D, Yuan H L. Hopf bifurcation of a nutritional microbial diffusion model with time delay. Journal of Southwest Normal University (Natural Science Edition), 2023, 48(5): 1-13 | | [29] | Dong Y Y, Li S B, Zhang S L. Hopf bifurcation in a reaction-diffusion model with Degn-Harrison reaction scheme. Nonlinear Anal: Real World Appl, 2017, 33: 284-297 | | [30] | Lin X D, So J W H, Wu J H. Center manifolds for partial differential equations with delay. P Roy Soc Edinb A: Math, 1992, 122(3/4): 237-254 | | [31] | Wu J H. Theory and Applications of Partial Functional Differential Equations. New York: Springer-Verlag, 1996 | | [32] | 万阿英, 衣风岐, 郑立飞. 一类扩散的 Gierer-Meinhardt 的模型的振动模式和 Hopf 分支分析. 数学物理学报, 2015, 35A(2): 381-394 | | [32] | Wan A Y, Yi F Q, Zeng L F. Oscillating patterns and Hopf bifurcation analysis of a class of diffusion Gierer-Meinhardt models. Acta Math Sci, 2015, 35A(2): 381-394 |
|