| [1] | Citti G, Manfredini M. A degenerate parabolic equation arising in image processing. Commun Appl Anal, 2004, 8(1): 125-141 | | [2] | Ghil M. Climate stability for a Sellers type mode. J Atmo Sci, 1976, 29(5): 483-493 | | [3] | Ethier S N, Kurtz T G. Fleming-Viot processes in population genetics. SIAM J Control Optim, 1993, 31(2): 345-386 | | [4] | Alabau-Boussouira F, Cannarsa P, Leugering G. Control and stabilization of degenerate wave equation. SIAM J Control Optim, 2017, 55(3): 2052-2087 | | [5] | Zhang M M, Gao H. Null controllability of some degenerate wave equations. J Syst Sci Complex, 2017, 30(5): 1027-1041 | | [6] | Zhang M M, Gao H. Persistent regional null controllability of some degenerate wave equations. Math Meth Appl Sci, 2017, 40(16): 5821-5830 | | [7] | Zhang M M, Gao H. Interior controllability of semi-linear degenerate wave equations. J Math Anal Appl, 2018, 457(1): 10-22 | | [8] | Bai J Y, Chai S G. Exact controllability for some degenerate wave equations. Math Meth Appl Sci, 2020, 43(12): 7292-7302 | | [9] | Bai J Y, Chai S G. Exact controllability for a one-dimensional degenerate wave equation in domains with moving boundary. Appl Math Lett, 2021, 119: Article ID 107235 | | [10] | Gumowski I, Mira C. Optimization in Control Theory and Practice. Cambridge: Cambridge University Press, 1968 | | [11] | Datko R, Lagness J, Poilis M P. An example on the effect of time delays in boundary feedback stabilization of wave equations. SIAM J Control Optim, 1986, 24(1): 152-156 | | [12] | Datko R. Not all feedback stabilized hyperbolic systems are robust with respect to small time delay in their feedbacks. SIAM J Control Optim, 1988, 26(3): 697-713 | | [13] | Wang J N, Yang D Z. Stability and bifurcation of a pathogen-immune model with delay and diffusion effects. Acta Math Sci, 2021, 41A(4): 1204-1217 | | [14] | Xu G Q, Yung S P, Li L K. Stabilization of wave systems with input delay in the boundary control. ESAIM Control Optim Calc Var, 2006, 12(4): 770-785 | | [15] | Nicaise S, Pignotti C. Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J Control Optim, 2006, 45(5): 1561-1585 | | [16] | Nicaise S, Pignotti C. Stabilization of the wave equation with boundary or internal distributed delay. Differential Integral Equ, 2008, 21(9/10): 935-958 | | [17] | Ait Benhassi E M, Ammari K, Boulite S, Maniar L. Feedback stabilization of a class of evolution equations with delay. J Evol Equ, 2009, 9(1): 103-121 | | [18] | Nicaise S, Valein J. Stabilization of second order evolution equations with unbounded feedback with delay. ESAIM Control Optim Calc Var, 2010, 16(2): 420-456 | | [19] | Ammari K, Nicaise S, Pignotti C. Feedback boundary stabilization of wave equations with interior delay. Syst Control Lett, 2010, 59(10): 623-628 |
|