| [1] | Boyd S, Parikh N, Chu E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn, 2011, 3: 1-122 | | [2] | Glowinski R, Marroco A. Sur l'approximation, paréléments finis d'ordre un, et la résolution, par pénalisation-dualitéd'une classe de problèmes de Dirichlet non linéaires. Journal of Equine Veterinary Science, 1975, 2: 41-76 | | [3] | Gabay D, Mercier B. A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Computers and Mathematics with Applications, 1976, 2: 17-40 | | [4] | Bertsekas D, Tsitsiklis J. Numerical Methods for Nonlinear Variational Problems. Berlin: Springer Series in Computational Physics, Springer, 1984 | | [5] | 何炳生. 乘子交替方向法的一些收敛性质. 高等学校计算数学学报, 2017, 39: 81-96 | | [5] | He B S. Some convergence properties of the alternating direction method of multipliers. Numerical Mathematics A Journal of Chinese Universities, 2017, 39: 81-96 | | [6] | Yang W H, Han D R. Linear Convergence of the alternating direction method of multipliers for a class of convex optimization problems. SIAM Journal on Numerical Analysis, 2016, 54: 625-640 | | [7] | He B S, Ma F, Yuan X M. Convergence study on the symmetric version of ADMM with larger step sizes. SIAM Journal on Imaging Sciences, 2016, 9: 1467-1501 | | [8] | Fazel M, Pong T K, Sun D F, et al. Hankel matrix rank minimization with applications to system identification and realization. SIAM Journal on Matrix Analysis and Applications, 2013, 34: 946-977 | | [9] | Li M, Sun D F, Toh K C. A majorized ADMM with indefinite proximal terms for linearly constrained convex composite optimization. SIAM Journal on Optimization, 2016, 26: 922-950 | | [10] | Zhang L, Wu J, Zhang L W. A linearly convergent majorized ADMM with indefinite proximal terms for convex composite programming and its applications. Mathematics of Computation, 2020, 89(324): 1867-1894 | | [11] | Wang H H, Banerjee A. Bregman alternating direction method of multipliers. Arxiv: 1306.3203v3, 2014 | | [12] | Wang F, Xu Z B, Xu H K. Convergence of Bregman alternating direction method with multipliers for nonconvex composite problems. https://arXiv preprint arXiv: 1410.8625, 2014 | | [13] | Guo K, Han D R, Wu T T. Convergence of alternating direction method for minimizing sum of two nonconvex functions with linear constraints. International Journal of Computer Mathematics, 2017, 94: 1653-1669 | | [14] | Wu Z M, Li M, Wang D, et al. A symmetric alternating direction method of multipliers for separable nonconvex minimization problems. Asia Pacific Journal of Operation Research, 2017, 34(06): 1750030 | | [15] | Jian J B, Zhang Y, Chao M T. A regularized alternating direction method of multiplier for a class of nonconvex problems. Journal of Inequalities and Applications, 2019, 2019: 1-16 | | [16] | Jia Z H, Gao X, Cai X J, et al. Local linear convergence of the alternating direction method of multipliers for nonconvex separable optimization problems. Journal of Optimization Theory and Applications, 2021, 188: 1-25 | | [17] | Chen C H, He B S, Ye Y Y, et al. The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. Mathematical Programming, 2016, 155: 57-79 | | [18] | Han D R, Yuan X M. A note on the alternating direction method of multipliers. Journal of Optimization Theory and Applications, 2012, 155: 227-238 | | [19] | Lin T Y, Ma S Q, Zhang S Z. Global convergence of unmodified 3-block ADMM for a class of convex minimization problems. Journal of Scientific Computing, 2018, 76: 69-88 | | [20] | He B S. Parallel splitting augmented lagrangian methods for monotone structured variational inequalities. Computational Optimization and Applications, 2009, 42: 195-212 | | [21] | He B S, Tao M, Yuan X M. Alternating direction method with Gaussian back substitution for separable convex programming. SIAM Journal on Optimization, 2012, 22: 313-340 | | [22] | Chen L, Li X D, Sun D F, et al. On the equivalence of inexact proximal ALM and ADMM for a class of convex composite programming. Mathematical Programming, 2021, 185: 111-161 | | [23] | Deng W, Lai M J, Peng Z M, et al. Parallel multi-block ADMM with$o(1/k)$convergence. Journal of Scientific Computing, 2017, 71 : 712-736 | | [24] | Hong M Y, Luo Z Q, Razaviyayn M. Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems. SIAM Journal on Optimization, 2016, 26: 337-364 | | [25] | Guo K, Han D R, David W W, et al. Convergence of ADMM for multi-block nonconvex separable optimization mobels. Front. Math. China, 2017, 12: 1139-1162 | | [26] | Jiang B, Lin T Y, Ma S Q, et al. Structured nonconvex and nonsmooth optimization: algorithms and iteration complexity analysis. Computational Optimization and Applications, 2019, 72: 115-157 | | [27] | Yashtinin M. Multi-block nonconvex nonsmooth proximal ADMM: Convergence and rates under Kurdyka-?ojasiewicz property. Journal of Optimization Theory and Applications, 2021, 190: 966-998 | | [28] | 简金宝, 刘鹏杰, 江羡珍. 非凸多分块优化部分对称正则化交替方向乘子法. 数学学报, 2021, 64A(6): 1005-1026 | | [28] | Jian J B, Liu P J, Jiang X Z. A partially symmetric regularized alternating direction method of multipliers for nonconvex Multi-block optimization. Acta Mathematica Sinica (Chinese Series), 2021, 64A(6): 1005-1026 | | [29] | Wang F H, Cao W F, Xu Z B. Convergence of multi-block Bregman ADMM for nonconvex problems. Science China Information Sciences, 2018, 61: 1-12 | | [30] | Frankel P, Garrigos G, Peypouquet J. Splitting methods with variable metric for Kurdyka-?ojasiewicz functions and general convergence rates. Journal of Optimization Theory and Applications, 2015, 165: 874-900 | | [31] | Rockafellar R T, Wets R J B. Variational Analysis. Berlin: Springer Science and Business Media, 2009 | | [32] | Attouch H, Bolte J, Svaiter B F. Convergence of descent methods for semi-algebraic and tame problems: Proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods. Mathematical Programming, 2013, 137: 91-129 | | [33] | Si S, Tao D C, Geng B. Bregman divergence-based regularization for transfer subspace learning. IEEE Transactions on Knowledge and Data Engineering, 2010, 22: 929-942 | | [34] | Xu Z B, Chang X Y, Xu F M, et al. $L_{1/2}$regularization: a thresholding representation theory and a fast solver. IEEE Transactions on Neural Networks and Learning systems, 2012, 23: 1013-1027 | | [35] | Bolte J, Daniilidis A, Lewis A. $L_{1/2}$The ?ojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM Journal on Optimization, 2007, 17: 1205-1223 |
|