| [1] | Acheritogaray M, Degond P, Frouvelle A, Liu J. Kinetic formulation and global existence for the Hall- Magnetohydrodynamics system. Kinet Relat Models, 2011, 4: 901-918 | | [2] | Forbes T. Magnetic reconnection in solar flares. Geophys Astrophys Fluid Dyn, 1991, 62: 15-36 | | [3] | Balbus S, Terquem C. Linear analysis of the Hall effect in protostellar disks. Astrophys J, 2001, 552: 235-247 | | [4] | Wardle M. Star formation and the Hall effect Astrophys. Space Sci, 2004, 292: 317-323 | | [5] | Shalybkov D, Urpin V. The Hall effect and the decay of magnetic fields. Astronom Astrophys, 1997, 321: 685-690 | | [6] | Chae D, Degond P, Liu J. Well-posedness for Hall-magnetohydrodynamics. Ann Inst H Poincar′e Anal Non Linéaire, 2014, 31: 555-565 | | [7] | Chae D, Lee J. On the blow-up criterion and small data global existence for the Hallmagnetohydrodynamics. J Differ Equ, 2014, 256: 3835-3858 | | [8] | Wan R, Zhou Y. On global existence, energy decay and blow-up criteria for the Hall-MHD system. J Differ Equ, 2015, 259: 5982-6008 | | [9] | Wan R, Zhou Y. Global well-posedness, BKM blow-up criteria and zero h limit for the 3D incompressible Hall-MHD equations. J Differ Equ, 2019, 267: 3724-3747 | | [10] | Wan R, Zhou Y. Global well-posedness for the 3D incompressible Hall-magnetohydrodynamic equations with Fujita-Kato type initial data. J Math Fluid Mech, 2019, 21: 5 | | [11] | Li J, Yu Y, Zhu W. A class large solution of the 3D Hall-magnetohydrodynamic equations. J Differ Equ, 2020, 268: 5811-5822 | | [12] | Wan R, Zhou Y. Low regularity well-posedness for the 3D generalized Hall-MHD system. Acta Appl Math, 2017, 147: 95-111 | | [13] | Dai M. Regularity criterion for the 3D Hall-magneto-hydrodynamics. J Differ Equ, 2016, 261: 573-591 | | [14] | He F, Ahmad B, Hayat T, Zhou Y. On regularity criteria for the 3D Hall-MHD equations in terms of the velocity. Nonlinear Anal RWA, 2016, 32: 35-51 | | [15] | Fan J, Fukumoto Y, Nakamura G, Zhou Y. Regularity criteria for the incompressible Hall-MHD system. Z Angew Math Mech, 2015, 95: 1156-1160 | | [16] | Fan J, Jia X, Nakamura G, Zhou Y. On well-posedness and blowup criteria for the magnetohydrodynamics with the Hall and ion-slip effects. Z Angew Math Phys, 2015, 66: 1695-1706 | | [17] | Wu X, Yu Y, Tang Y. Well-posedness for the Hall-MHD equations in low regularity spaces. Mediterr J Math, 2018, 15: 48 | | [18] | Wu X, Yu Y, Tang Y. Global existence and asymptotic behavior for the 3D generalized Hall-MHD system. Nonlinear Anal, 2017, 151: 41-50 | | [19] | Bahouri H, Chemin J Y, Danchin R. Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften, Vol 343. Berlin, Heidelberg: Springer-Verlag, 2011 | | [20] | Liao X, Zhang P. Global regularities of 2-D density patch for viscous inhomogeneous incompressible flow with general density: Low regularity. Comm Pure Appl Math, 2019, 72: 835-884 |
|