Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (5): 1144-1152.
Previous Articles Next Articles
Wei Jianing1(),Duan Zhoubo1,*(
),Zhang Jun1,2(
)
Received:
2022-10-26
Revised:
2024-04-29
Online:
2024-10-26
Published:
2024-10-16
Supported by:
CLC Number:
Wei Jianing, Duan Zhoubo, Zhang Jun. Geometric Discord for a Class of Three-Qubit X States[J].Acta mathematica scientia,Series A, 2024, 44(5): 1144-1152.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Ollivier H, Zurek W H. Quantum discord: A measure of the quantumness of correlations. Physical Review Letters, 2001, 88(1): 017901 |
[2] | Henderson L, Vedral V. Classical, quantum and total correlations. Journal of Physics A: Mathematical and General, 2001, 34(35): 6899 |
[3] | Lanyon B P, Barbieri M, Almeida M P, et al. Experimental quantum computing without entanglement. Physical Review Letters, 2008, 101(20): 200501 |
[4] | Merali Z. The power of discord: Physicists have always thought quantum computing is hard because quantum states are incredibly fragile. But could noise and messiness actually help things along? Nature, 2011, 474(7349): 24-27 |
[5] | Li N, Luo S. Total versus quantum correlations in quantum states. Physical Review A, 2007, 76(3): 032327 |
[6] | Mazzola L, Piilo J, Maniscalco S. Sudden transition between classical and quantum decoherence. Physical Review Letters, 2010, 104(20): 200401 |
[7] | Niset J, Cerf N J. Multipartite nonlocality without entanglement in many dimensions. Physical Review A, 2006, 74(5): 052103 |
[8] | Werlang T, Souza S, Fanchini F F, et al. Robustness of quantum discord to sudden death. Physical Review A, 2009, 80(2): 024103 |
[9] | Sarandy M S. Classical correlation and quantum discord in critical systems. Physical Review A, 2009, 80(2): 022108 |
[10] | Dakič B, Lipp Y O, Ma X, et al. Quantum discord as resource for remote state preparation. Nature Physics, 2012, 8(9): 666-670 |
[11] | Dillenschneider R. Quantum discord and quantum phase transition in spin chains. Physical Review B, 2008, 78(22): 224413 |
[12] | Pirandola S. Quantum discord as a resource for quantum cryptography. Scientific Reports, 2014, 4(1): 06956 |
[13] | Rulli C C, Sarandy M S. Global quantum discord in multipartite systems. Physical Review A, 2011, 84(4): 042109 |
[14] | Luo S, Fu S. Geometric measure of quantum discord. Physical Review A, 2010, 82(3): 034302 |
[15] | Radhakrishnan C, Laurière M, Byrnes T. Multipartite generalization of quantum discord. Physical Review Letters, 2020, 124(11): 110401 |
[16] | Zhu C L, Hu B, Li B, et al. Geometric discord for multiqubit systems. Quantum Information Processing, 2022, 21(7): 1-15 |
[17] | Maziero J, Celeri L C, Serra R M, et al. Classical and quantum correlations under decoherence. Physical Review A, 2009, 80(4): 044102 |
[18] | Yu T, Eberly J H. Quantum open system theory: Bipartite aspects. Physical Review Letters, 2006, 97(14): 140403 |
[1] | Tu Kun, Ding Huisheng. Shadowing Properties of Semilinear Nonautonomous Evolution Equations on Banach Spaces [J]. Acta mathematica scientia,Series A, 2025, 45(4): 1144-1160. |
[2] | Dai Yujiao, Xu Jingshi. Weak Musicelak-Orlicz-Triebel-Lizorkin Spaces with Variable Smooth Exponent [J]. Acta mathematica scientia,Series A, 2025, 45(3): 687-701. |
[3] | Ma Li, Chen Pengying, Han Xinfang. New Results On Gauss Product Inequalities (I) [J]. Acta mathematica scientia,Series A, 2025, 45(3): 960-971. |
[4] |
Yao Wangjin, Zhang Huiping.
Multiple Solutions for a Class of |
[5] | Huang Jieyi, Cheng Na. Some Properties about Band Operators [J]. Acta mathematica scientia,Series A, 2025, 45(3): 702-706. |
[6] | Chen Zhengyan,Zhang Jiafeng. Ground State Solutions for a Class of Critical Kirchhoff Type Equation in $ \mathbb{R}^4$ with Steep Potential Well [J]. Acta mathematica scientia,Series A, 2025, 45(2): 450-464. |
[7] | Zhang Yuting, Gao Xinghui, Peng Jianying. Iterative Algorithms of Common Elements for the Set of Solutions of Split Feasibility Problem and the Set of Common Fixed Points of a Finite Family of Quasi-Nonexpansive Operators [J]. Acta mathematica scientia,Series A, 2025, 45(1): 256-268. |
[8] | Zhang Qian. Normalized Solutions of the Quasilinear Schrödinger System in Bounded Domains [J]. Acta mathematica scientia,Series A, 2025, 45(1): 1-30. |
[9] | Huo Huixia, Li Yongxiang. Existence of Positive Solutions for a Bending Elastic Beam Equation [J]. Acta mathematica scientia,Series A, 2024, 44(6): 1476-1484. |
[10] | Chai Mengcen, Dai Yuxia. Freely Quasiconformal Mappings in Quasiconvex Metric Spaces [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1127-1135. |
[11] | Ding Xuanhao, Shao Changhui, Li Yongning. The Product of Volterra Operator and Toeplitz Operator [J]. Acta mathematica scientia,Series A, 2024, 44(4): 829-836. |
[12] | Chen Xi, Wang Zhengping. Constrained Minimizers of Nonlinear S-P Equations with Dirac Potentials [J]. Acta mathematica scientia,Series A, 2024, 44(4): 907-913. |
[13] | Hong Yong, Zhao Qian. Parameter Conditions for Constructing Bounded Discrete Operators with Super-Homogeneous Kernel and Estimation of the Operator Norm [J]. Acta mathematica scientia,Series A, 2024, 44(4): 837-846. |
[14] | Dong Jianxiang. Hankel Operators on Vector-Valued Bergman Space with Exponential Type Weights [J]. Acta mathematica scientia,Series A, 2024, 44(3): 513-524. |
[15] | Wang Panxing, Liang Yuxia, Pang Songyue. Numerical Range of the Complex Volterra Operator on Hardy Hilbert Space [J]. Acta mathematica scientia,Series A, 2024, 44(2): 276-285. |
|