Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (6): 1476-1484.
Previous Articles Next Articles
Received:
2023-12-22
Revised:
2024-05-11
Online:
2024-12-26
Published:
2024-11-22
Supported by:
CLC Number:
Huo Huixia, Li Yongxiang. Existence of Positive Solutions for a Bending Elastic Beam Equation[J].Acta mathematica scientia,Series A, 2024, 44(6): 1476-1484.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Aftabizadeh A R. Existence and uniqueness theorems for fourth-order boundary value problems. J Math Anal Appl, 1986, 116(2): 415-426 |
[2] | Gupta C P. Existence and uniqueness theorems for a bending of an elastic beam equation. Applicable Analysis, 1988, 26: 289-304 |
[3] | Ma R, Wang H. On the existence of positive solutions of fourth-order ordinary differential equations. Applicable Analysis, 1995, 59: 225-231 |
[4] | Bai Z, Wang H. On positive solutions of some nonlinear fourth-order bean equations. J Math Anal Appl, 2002, 270(2): 357-368 |
[5] |
李永祥. 四阶边值问题正解的存在性与多解性. 应用数学学报, 2003, 26(1): 109-116
doi: 10.12387/C2003011 |
Li Y X. Existence and multiplicity of positive solutions for fourth-order boundary value problems. Acta Math Appl Sinica, 2003, 26(1): 109-116
doi: 10.12387/C2003011 |
|
[6] | Li Y X. On the existence of positive solutions for the bending elastic beam equations. Appl Math Comput, 2007, 189(1): 821-827 |
[7] | Ma R, Xu L. Existence of positive solutions of a nonlinear fourth-order boundary value problem. Appl Math Lett, 2010, 23(5): 537-543 |
[8] | Li Y X, Wang D. An existence result of positive solutions for the bending elastic beam equations. Symmetry, 2023, 15(2): Article 405 |
[9] | 吴红萍. 一类四阶两点边值问题正解的存在性. 应用泛函分析学报, 2002, 4(3): 229-232 |
Wu H P. The existence of positive solutions for a fourth-order nonlinear eigenvalue problem. Acta Anal Funct Appl, 2002, 4(3): 229-232 | |
[10] | Bai Z, Lian W, Wei Y, Sun S. Solvability for some fourth order two-point boundary value problems. AIMS Mathematics, 2020, 5(5): 4983-4994 |
[11] | 瞿婧, 李永祥. 含导数项两端固定支撑的弹性梁方程的可解性. 吉林大学学报, 2023, 61(5): 1014-1018 |
Qu J, Li Y X. Solvability of elastic beam equation with derivative term and fixed supports at both ends. J Jilin Univ Sci, 2023, 61(5): 1014-1018 | |
[12] | Yao Q L. Monotonically iterative method of nonlinear cantilever beam equations. Appl Math Comput, 2008, 205(1): 432-437 |
[13] | 姚庆六. 非线性悬臂梁方程的正解存在定理. 应用数学学报, 2012, 35A(4): 737-746 |
Yao Q L. Existence theorems for positive solutions to a nonlinear cantilever beam equation. Acta Math Appl Sinica, 2012, 35A(4): 737-746 | |
[14] | Yao Q L. Local existence of multiple positive solutions to a singular cantilever beam equation. J Math Anal Appl, 2010, 363(1): 138-154 |
[15] | Li Y X. Existence of positive solutions for the cantilever beam equations with fully nonlinear terms. Nonlinear Anal RWA, 2016, 27: 221-237 |
[16] | Ma T F, Silva J D. Iterative solutions for a beam equation with nonlinear boundary conditions of third order. Appl Math Comput, 2004, 159(1): 11-18 |
[17] | Alves E, Ma T F, Pelicer M L. Monotone positive solutions for a fourth order equation with nonlinear boundary conditions. Nonlinear Anal, 2009, 71(9): 3834-3841 |
[18] | Infante G, Pietramala P. A cantilever equation with nonlinear boundary conditions. Electron J Qual Theory Differ Equ, 2009, 15: 1-14 |
[19] | Cabada A, Tersian S. Multiplicity of solutions of a two point boundary value problem for a fourth-order equation. Appl Math Comput, 2013, 219(10): 5261-5267 |
[20] | 郭大钧. 非线性泛函分析. 济南: 山东科学技术出版社, 1985 |
Guo D J. Nonlinear Functional Analysis. Jinan: Shandong Science and Technology Press, 1985 |
|