| [1] | Fan J, Zhou Y. Global well-posedness of the Navier-Stokes-omega equations. Appl Math Lett, 2011, 24(11): 1915-1918 | | [2] | Koch H, Tataru D. Well-posedness for the Navier-Stokes equations. Adv Math, 2001, 157(1): 22-35 | | [3] | Paicu M, Zhang Z. Global well-posedness for 3D Navier-Stokes equations with ill-prepared initial data. J Inst Math Jussieu, 2014, 13(2): 395-411 | | [4] | Craig W, Huang X, Wang Y. Global wellposedness for the 3D inhomogeneous incompressible Navier-Stokes equations. J Math Fluid Mech, 2013, 15(4): 747-758 | | [5] | Chen Q, Miao C, Zhang Z. Global well-posedness for the 3D rotating Navier-Stokes equations with highly oscillating initial data. Pacific J Math, 2013, 262(2): 263-283 | | [6] | Larios A, Pei Y, Rebholz L. Global well-posedness of the velocity-vorticity-Voigt model of the 3D Navier-Stokes equations. J Differ Equations, 2019, 266(5): 2435-2465 | | [7] | 孙小春, 何港晶. Navier-Stokes-Coriolis 方程解的长时间存在性. 数学物理学报, 2022, 42A(5): 1416-1423 | | [7] | Sun X C, He G J. Long time existence of the solutions for the Navier-Stokes-Coriolis equations. Acta Math Sci, 2022, 42A(5): 1416-1423 | | [8] | Hajduk K W, Robinson J C. Energy equality for the 3D critical convective Brinkman-Forchheimer equations. J Differ Equations, 2017, 263(11): 7141-7161 | | [9] | Kalantarov V, Zelik S. Smooth attractors for the Brinkman-Forchheimer equations with fast growing nonlinearities. Commun Pure Appl Anal, 2012, 11(5): 2037-2054 | | [10] | Markowich P A, Titi E S, Trabelsi S. Continuous data assimilation for the three-dimensional Brinkman-Forchheimer-extended Darcy model. Nonlinearity, 2016, 29(4): Article 1292 | | [11] | Wang B, Lin S. Existence of global attractors for the three-dimensional Brinkman-Forchheimer equation. Math Method Appl Sci, 2008, 31(12): 1479-1495 | | [12] | You Y, Zhao C, Zhou S. The existence of uniform attractors for 3D Brinkman-Forchheimer equations. Discrete Contin Dyn Syst, 2012, 32(10): 3787-3800 | | [13] | Xueli S, Xi D, Baoming Q. Dimension estimate of the global attractor for a 3D Brinkman-Forchheimer equation. Wuhan University Journal of Natural Sciences, 2023, 28(1): 1-10 | | [14] | Caucao S, Esparza J. An augmented mixed FEM for the convective Brinkman-Forchheimer problem: a priori and a posteriori error analysis. Journal of Computational and Applied Mathematics, 2024, 438: 115517 | | [15] | Ghidaglia J M, Temam R. Long time behavior for partly dissipative equations: the slightly compressible 2D-Navier-Stokes equations. Asymptotic Anal, 1988, 1(1): 23-49 | | [16] | Kalantarov V, Zelik S. Asymptotic regularity and attractors for slightly compressible Brinkman-Forchheimer equations. Appl Math Optim, 2021, 84(3): 3137-3171 | | [17] | Córdoba A, Córdoba D. A maximum principle applied to quasi-geostrophic equations. Comm Math Phys, 2004, 249(3): 511-528 | | [18] | 郭柏灵, 蒲学科, 黄凤辉. 分数阶偏微分方程及其数值解. 北京: 科学出版社, 2011 | | [18] | Guo B L, Pu X K, Huang F H. Fractional Partial Differential Equations and their Numerical Solutions. Beijing: Science Press, 2011 | | [19] | Nguyen H Q. Global weak solutions for generalized SQG in bounded domains. Anal PDE, 2018, 11(4): 1029-1047 | | [20] | Constantin P, Ignatova M, Nguyen H Q. Inviscid limit for SQG in bounded domains. SIAM J Math Anal, 2018, 50(6): 6196-6207 | | [21] | Liu Y, Sun C Y. Inviscid limit for the damped generalized incompressible Navier-Stokes equations on ${{T}}^{2}$. Discrete Contin Dyn Syst Ser S, 2021, 14(12): 4383-4408 | | [22] | 孙小春, 吴育联, 徐郜婷. 分数阶不可压缩 Navier-Stokes-Coriolis 方程解的整体适定性. 数学物理学报, 2024, 44A(3): 737-745 | | [22] | Sun X C, Wu Y L, Xu G T. Global well-posedness for the fractional Navier-Stokes equations with the Coriolis force. Acta Math Sci, 2024, 44A(3): 737-745 | | [23] | Pata V. Uniform estimates of Gronwall type. J Math Anal Appl, 2011, 373(1): 264-270 | | [24] | Kalantarov V, Zelik S. Finite-dimensional attractors for the quasi-linear strongly-damped wave equation. J Differ Equations, 2009, 247(4): 1120-1155 | | [25] | Pata V, Zelik S. Smooth attractors for strongly damped wave equations. Nonlinearity, 2006, 19(7): 1495-1506 | | [26] | Zelik S. Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent. Commun Pure Appl Anal, 2004, 3(4): 921-934 | | [27] | Mei X Y, Savostianov A, Sun C Y, Zelik S. Infinite energy solutions for weakly damped quintic wave equations in ${{R}^{3}}$. Trans Amer Math Soc, 2021, 374(5): 3093-3129 | | [28] | Babin A V, Vishik M I. Attractors of Evolution Equations. Holland: Elsevier, 1992 | | [29] | Vishik M I, Chepyzhov V V. Trajectory attractors of equations of mathematical physics. Russian Math Surveys, 2011, 66(4): 637-731 | | [30] | Ladyzhenskaya O. Attractors for Semi-groups and Evolution Equations (Lezioni Lincee). Cambridge: Cambridge University Press, 1991 | | [31] | Miranville A, Zelik S. Attractors for dissipative partial differential equations in bounded and unbounded domains. Handbook of Differential Equations: Evolutionary Equations, 2008, 4: 103-200 | | [32] | Temam R. Infinite Dimensional Dynamical Systems in Mechanics and Physics. Berlin: Springer-Verlag, 1997 | | [33] | Efendiev M, Miranville A, Zelik S. Exponential attractors for a nonlinear reaction-diffusion system in ${{R}^{3}}$. C R Acad Sci Paris, 2000, 330(8): 713-718 | | [34] | Fabrie P, Galusinski C, Miranville A, Zelik S. Uniform exponential attractors for a singular perturbed damped wave equation. Discrete Contin Dyn Syst, 2004, 10(1/2): 211-238 | | [35] | Adams J F. Stable Homotopy and Generalised Homology. Chicago: University of Chicago Press, 1974 |
|