| [1] | Mackey M C, Glass L. Oscillation and chaos in physiological control systems. Science, 1977, 197(4300): 287-289 | | [2] | Gopalsamy K, Zhang B G. On delay differential equations with impulses. J Math Anal Appl, 1989, 139(1): 110-121 | | [3] | Gy?ri I, Ladas G. Oscillation Theory of Delay Equations with Applications. Oxford: Clarendon press, 1991 | | [4] | Agarwal R P, Karakoc F. A survey on oscillation of impulsive delay differential equations. Comput Math Appl, 2010, 60(6): 1648-1685 | | [5] | Agarwal R P, Berezansky L, Braverman E, Domoshnitsky A. Nonoscillation Theory of Functional Differential Equations with Applications. New York: Springer, 2012 | | [6] | Dong J G. Oscillation behavior of second order nonlinear neutral differential equations with deviating arguments. Comput Math Appl, 2010, 59(12): 3710-3717 | | [7] | Chatzarakis G E, Dorociaková B, Olach R. An oscillation criterion of linear delay differential equations. Adv Differ Equ, 2021, 2021: Article 85 | | [8] | Salah H, Moaaz O, Cesarano C, Elabbasy E M. Oscillation of higher-order canonical delay differential equations: comparison theorems. Phys Scr, 2023, 98(2): 024003 | | [9] | Saranya K, Piramanantham V, Thandapani E. Oscillation results for third-order semi-canonical quasi-linear delay differential equations. Nonautonomous Dynamical Systems, 2021, 8(1): 228-238 | | [10] | Shi S, Han Z. Oscillation of second-order half-linear neutral advanced differential equations. Commun Appl Math Comput, 2021, 3: 497-508 | | [11] | Zhuang Z, Wang Q, Wu H. A new oscillation criterion for first-order delay differential equations by iteration. Appl Math Comput, 2021, 390: 125632 | | [12] | Grace S R, Chhatria G N. Oscillation of higher order nonlinear dynamic equations with a nonlinear neutral term. Math Methods Appl Sci, 2023, 46(2): 2373-2388 | | [13] | Shoukaku Y. Oscillation of first order neutral differential equations with delay. Differ Equ Dyn Syst, 2023, 31(2): 283-288 | | [14] | Gopalsamy K. Stability and Oscillation in Delay Differential Equations of Population Dynamics. Dordrecht: Springer, 1992 | | [15] | Berezansky L, Braverman E. On oscillation of a logistic equation with several delays. J Comput Appl Math, 2000, 113(1/2): 255-265 | | [16] | Xu C J, Li P L. Oscillations for a delayed predator-prey model with Hassell-Varley-Type functional response. CR Biol, 2015, 338(4): 227-240 | | [17] | Gao J F, Song M H, Liu M Z. Oscillation analysis of numerical solutions for nonlinear delay differential equations of population dynamics. Math Model Anal, 2011, 16(3): 365-375 | | [18] | 王琦, 汪小明. 单物种人口模型指数隐式 Euler 方法的振动性. 计算数学, 2015, 37(1): 59-66 | | [18] | Wang Q, Wang X M. Oscillations of exponential implicit Euler method for a single species population model. Math Numer Sin, 2015, 37(1): 59-66 | | [19] | Gao J F, Song F Y. Oscillation analysis of numerical solutions for nonlinear delay differential equations of hematopoiesis with unimodal production rate. Appl Math Comput, 2015, 264: 72-84 | | [20] | Wang Y Z, Gao J F. Oscillation analysis of numerical solutions for delay differential equations with real coefficients. J Comput Appl Math, 2018, 337: 73-86 | | [21] | Wang Q, Wen J C. Oscillations of numerical solution for nonlinear delay differential equations in food limited population model. Math Appl, 2013, 26(2): 360-366 | | [22] | 宋福义, 高建芳. 一类非线性延迟微分方程数值解的振动性分析. 计算数学, 2015, 37(4): 425-438 | | [22] | Song F Y, Gao J F. Oscillation analysis of numerical solutions for a kind of nonlinear delay differential equation. Math Numer Sin, 2015, 37(4): 425-438 | | [23] | 闫朝琳, 高建芳. 混合型脉冲微分方程的数值振动性分析. 数学物理学报, 2020, 40A(4): 993-1006 | | [23] | Yan Z L, Gao J F. Numerical oscillation analysis of the mixed type impulsive differential equation. Acta Math Sci, 2020, 40A(4): 993-1006 | | [24] | Berezansky L, Braverman E. Mackey-Glass model of hematopoiesis with monotone feedback revisited. Appl Math Comput, 2013, 219(9): 4892-4907 |
|