| [1] | Rao B P. On the sensitivity of the transmission of boundary dissipation for strongly coupled and indirectly damped systems of wave equations. Z Angew Math Phys, 2019, 70(3): 1-25 |
| [2] | Chai S G, Liu K S. Boundary stabilization of the transmission of wave equations with variable coefficients. Chinese Ann Math A, 2005, 26(5): 605-612 |
| [3] | Chai S G, Guo Y X. Boundary stabilization of wave equations with variable coefficients and memory. Differ Integral Equ, 2004, 17(5/6): 669-680 |
| [4] | Liu Y X. Polynomial decay of a variable coefficient wave equation with an acoustic undamped boundary condition. J Math Anal Appl, 2019, 479(2): 1641-1652 |
| [5] | Ning Z H. Asymptotic behavior of the nonlinear Schr?dinger equation on exterior domain. Math Re Lett, 2020, 27(1): 1825-1866 |
| [6] | Zhao X P, Ning Z H, Shen S X. Stabilization of the wave equation with variable coefficients and a delay in dissipative internal feedback. J Math Anal Appl, 2013, 405(1): 148-155 |
| [7] | Guo B Z, Shao Z C. On exponential stability of a semilinear wave equation with variable coefficients under the nonlinear boundary feedback. Nonlinear Anal-Theor, 2009, 71(12): 5961-5978 |
| [8] | Ning Z H, Yan Q X. Stabilization of the wave equation with variable coefficients and a delay in dissipative boundary feedback. J Math Anal Appl, 2010, 367(1): 167-173 |
| [9] | Guo Z L, Chai S G. Stabilization of the transmission wave equation with variable coefficients and interior delay. J Geom Anal, 2022, 2: 33-53 |
| [10] | Feng S J, Feng D X. Nonlinear boundary stabilization of wave equations with variable coefficients. Chinese Ann Math, 2003, 24(2): 239-248 |
| [11] | Yao P F. On the observability inequalities for exact controllability of wave equations with variable coefficients. SIAM J Control Optim, 1999, 37(5): 1568-1599 |
| [12] | Lasiecka I, Triggiani R, Yao P F. Exact controllability for second-order hyperbolic equations with variable coefficients-principal part and first-order term. Nonlinear Anal-Theor, 1997, 30(1): 111-122 |
| [13] | Lasiecka I, Triggiani R, Yao P F. Inverse/observability estimates for second-order hyperbolic equations with variable coefficients. J Math Anal Appl, 1999, 235(1): 13-57 |
| [14] | Russell D L. A general framework for the study of indirect damping mechanisms in elastic systems. J Math Anal Appl, 1993, 173(2): 339-358 |
| [15] | Alabau-Boussouira F. Stabilisation frontiere indirecte de systemes faiblement couplés. Compt Rendus Acad Sci Math, 1999, 328(11): 1015-1020 |
| [16] | Alabau-Boussouira F, Cannarsa P, Komornik V. Indirect internal stabilization of weakly coupled evolution equations. J Evol Equ, 2002, 2(2): 127-150 |
| [17] | Alabau-Boussouira F, Cannarsa P, Guglielmi R. Indirect stabilization of weakly coupled systems with hybrid boundary conditions. Math Control Relat F, 2011, 1: 413-436 |
| [18] | Alabau-Boussouira F, Léautaud M. Indirect stabilization of locally coupled wave-type systems. ESAIM Contr Optim Ca, 2012, 18(2): 548-582 |
| [19] | Alabau-Boussouira F, Wang Z Q, Yu L X. A one-step optimal energy decay formula for indirectly nonlinearly damped hyperbolic systems coupled by velocities. ESAIM Contr Optim Ca, 2017, 23(2): 721-749 |
| [20] | Cavalcanti M M, Domingos Cavalcanti V N, Mansouri S, et al. Asymptotic stability for a strongly coupled Klein-Gordon system in an inhomogeneous medium with locally distributed damping. J Differ Equ, 2020, 268(2): 447-489 |
| [21] | Cavalcanti M M, Corrêa W J, Domingos Cavalcanti V N, et al. Uniform stability for a semilinear non-homogeneous Timoshenko system with localized nonlinear damping. Z Angew Math Phys, 2021, 72: 1-20 |
| [22] | Wu H, Shen C L, Yu Y L. An Introduction to Riemannian Geometry. Beijing: Peking University Press, 1989 |
| [23] | Yao P F. Modeling and Control in Vibrational and Structural Dynamics:A Differential Geometric Approach. Boca Raton: CRC Press, 2011 |
| [24] | Yao P F. Observability inequalities for the Euler-Bernoulli plate with variable coefficients. Contemp Math-Singap, 2000, 268: 383-406 |
| [25] | Martinez P. Stabilisation de systèmes distribués semilinéaires: domaines presque étoilés et inégalités intégrales généralisées. France: University of Strasbourg, 1998 |
| [26] | Martinez P. A new method to obtain decay rate estimates for dissipative systems. ESAIM Contr Optim Ca, 1999, 4: 419-444 |