| [1] | Coifman R R, Weiss G. Analyse Harmonique Non-Commutative Sur Certains Espaces Homogènes. Berlin: Springer-Verlag, 1971 | | [2] | Coifman R R, Weiss G. Extensions of Hardy spaces and their use in analysis. Bull Amer Math Soc, 1977, 83(4): 569-645 | | [3] | Frazier M, Jawerth B. A discrete transform and decompositions of distribution spaces. J Funct Anal, 1990, 93(1): 34-170 | | [4] | Han Y S, Müller D, Yang D C. A theory of Besov and Triebel-Lizorkin spaces on metric measure spaces modeled on Carnot-Carath\'{e}odory spaces. Abstr Appl Anal, 2008, 2008( 1): 893409 | | [5] | Han Y S. Plancherel-P?lya type inequality on spaces of homogeneous type and its applications. Proc Amer Math Soc, 1998, 126(11): 3315-3327 | | [6] | Tao X X, Kang Y C, Zheng T T. The $Tb$ theorem for some inhomogeneous Besov and Triebel-Lizorkin spaces over space of homogeneous type. J Math Anal Appl, 2024, 531(1): 127879 | | [7] | Zheng T T, Chen J C, et al. Calderón-Zygmund operators on homogeneous product Lipschitz spaces. J Geom Anal, 2021, 31(2): 2033-2057 | | [8] | Zheng T T, Xiao Y M, He S Y, Tao X X. $T1$ theorem on homogeneous product Besov spaces and product Triebel-Lizorkin spaces. Banach J Math Anal, 2022, 16(3): Article 50 | | [9] | Zheng T T, Li H L, Tao X X. The boundedness of Calderón-Zygmund operators on Lipschitz spaces over spaces of homogeneous type. Bull Braz Math Soc (N S), 2020, 51(2): 653-669 | | [10] | Zheng T T, Xiao Y M, Tao X X. The $T1$ theorem for the generalized product Calderón-Zygmund operator on product endpoint function spaces over RD spaces (in Chinese). Sci Sin Math, 2023, 53: 441-472 | | [11] | Han Y S, Sawyer E T. Littlewood-Paley theory on spaces of homogeneous type and the classical function spaces. Mem Amer Math Soc, 1994, 110(530): 1-126 | | [12] | Deng D G, Han Y S. Harmonic Analysis on Spaces of Homogeneous Type. Berlin:Springer, 2009 | | [13] | Han Y S. Inhomogeneous Calderón reproducing formula on spaces of homogeneous type. J Geom Anal, 1997, 7(2): 259-284 | | [14] | Müller D. Yang D C. A difference characterization of Besov and Triebel-Lizorkin spaces on RD spaces. Forum Math, 2009, 21(2): 259-298 | | [15] | Grafakos L, Liu L G, Maldonado D, Yang D C. Multilinear analysis on metric spaces. Dissertationes Math, 2014, 497: 1-121 | | [16] | Capri O N, Gutiérrez C E. Weighted inequalities for a vector-valued strong maximal function. Rocky Mountain J Math, 1988, 18(3): 565-570 | | [17] | Ding Y, Han Y S, Lu G Z, Wu X F. Boundedness of singular integrals on multiparameter weighted Hardy spaces $H^p_w\ (\Bbb R^n\times\Bbb R^m)$. Potential Anal, 2012, 37(1): 31-56 | | [18] | Fefferman R. $A_p$ weights and singular integrals. Amer J Math, 1988, 110(5): 975-987 | | [19] | Han Y S, Li J, Ward L A. Hardy space theory on spaces of homogeneous type via orthonormal wavelet bases. Appl Comput Harmon Anal, 2018, 45(1): 120-169 | | [20] | Huang Y H, Fang Q Q, Tao X X, Zheng T T. A new approach for Hardy spaces on Euclidean space. J Geom Anal, 2024, 34(10): Article 304 | | [21] | Müller D, Ricci F, Stein E M. Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups, I. Invent Math, 1995, 119(2): 119-233 | | [22] | Müller D, Ricci F, Stein E M. Marcinkiewicz multipliers and multi-parameter strucure on Heisenberg (-type) groups, II. Math Z, 1996, 221(2): 267-291 | | [23] | Zheng T T, Xiao Y M, Tao X X. Weighted estimates for product singular integral operatorsin Journe's class on RD-spaces. Forum Math, 2025, 37(2): 593-627 | | [24] | Lu G Z, Zhu Y P. Singular integrals and weighted Triebel-Lizorkin and Besov spaces of arbitrary number of parameters. Acta Math Sin Engl Ser, 2013, 29(1): 39-52 | | [25] | Auscher P, Hyt?nen T. Addendum to orthonormal bases of regular wavelets in spaces of homogeneous type. Appl Comput Harmon Anal, 2013, 34(2): 266-296 | | [26] | Hyt?nen T, Kairema A. Systems of dyadic cubes in a doubling metric space. Colloq Math, 2012, 126(1): 1-33 | | [27] | Wang F, Han Y S, He Z Y, Yang D C. Besov and Triebel-Lizorkin spaces on spaces of homogeneous type with applications to boundedness of Calderón-Zygmund operators. Dissertationes Math, 2021, 565: 1-113 |
|