Acta mathematica scientia,Series A ›› 2025, Vol. 45 ›› Issue (4): 1229-1244.
Previous Articles Next Articles
Wang Jiaxing,Yang Shuangquan,Dong Yichao*()
Received:
2025-01-16
Revised:
2025-06-12
Online:
2025-08-26
Published:
2025-08-01
Supported by:
CLC Number:
Wang Jiaxing, Yang Shuangquan, Dong Yichao. Combined Denoising Methods for Complex Signals[J].Acta mathematica scientia,Series A, 2025, 45(4): 1229-1244.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | 柯水霞. 信号降噪与解调技术研究. 南昌: 南昌大学, 2016 |
Ke S X. Signal Denoising and Demodulation Techniques Research. Nanchang: Nanchang University, 2016 | |
[2] | 黄显高, 徐健学, 何岱海, 等. 利用小波多尺度分解算法实现混沌系统的噪声减缩. 物理学报, 1999 (10): 1810-1817 |
Huang X G, Xu J X, He D H, et al. Noise reduction in chaotic systems via wavelet multiscale decomposition algorithm. Acta Physica Sinica, 1999 (10): 1810-1817 | |
[3] | 雷达, 钟诗胜. 基于奇异值分解和经验模态分解的航空发动机健康信号降噪. 吉林大学学报 (工学版), 2013, 43(3): 764-770 |
Lei D, Zhong S S. Aircraft engine health signal denoising based on singular value decomposition and empirical mode decomposition. Journal of Jilin University (Engineering Edition), 2013, 43(3): 764-770 | |
[4] | Lee D, Shin S R, Chung W, et al. Denoising sparker seismic data with Deep BiLSTM in fractional Fourier transform. Computers & Geosciences, 2024, 1.4: 105519 |
[5] |
贾瑞生, 赵同彬, 孙红梅, 等. 基于经验模态分解及独立成分分析的微震信号降噪方法. 地球物理学报, 2015, 58(3): 1013-1023
doi: 10.6038/cjg20150326 |
Jia R S, Zhao T L, Sun H M, et al. Microseismic signal denoising method based on empirical mode decomposition and independent component analysis. Journal of Geophysics, 2015, 58(3): 1013-1023
doi: 10.6038/cjg20150326 |
|
[6] | Ma Y, Cheng J, Wang P, et al. A novel Lanczos quaternion singular spectrum analysis method and its application to bevel gear fault diagnosis with multi-channel signals. Mechanical Systems and Signal Processing, 2021, 1.8: 108679 |
[7] | Ma Y, Cheng J, Hu N, et al. Symplectic quaternion singular mode decomposition with application in gear fault diagnosis. Mechanical Systems and Signal Processing, 2021, 1.0: 104266 |
[8] | Zhou J, Cheng J, Wu X, et al. Adaptive quaternion multivariate local characteristic-scale decomposition and its application to gear fault diagnosis. Digital Signal Processing, 2022, 1.9: 103655 |
[9] | Zhong J, Bi X, Shu Q, et al. Partial discharge signal denoising based on singular value decomposition and empirical wavelet transform. IEEE Trans Instrum Meas, 2020, 69(11): 8866-8873 |
[10] | Bandt C, Pompe B. Permutation entropy: A natural complexity measure for time series. Physical Review Letters, 2002, 88(17): 174102 |
[11] | Azami H, Escudero J. Amplitude-aware permutation entropy: Illustration in spike detection and signal segmentation. Comput Methods Programs Biomed, 2016, 1.8: 40-51 |
[12] | Huang J D, Ling L, Xiao Q X. Research on weak signal detection method for power system fault based on improved wavelet threshold. Energy Reports, 2022, 8(12): 290-296 |
[13] | 陈克, 张晓冬, 李宁. 基于 CEEMD 与自适小波阈值组合降噪在 OPAX 方法的应用. 振动与冲击, 2021, 40(16): 192-198 |
Chen K, Zhang X D, Li N. Application of CEEMD and adaptive wavelet thresholding combination denoising in the OPAX method. Vibration and Impact, 2021, 40(16): 192-198 | |
[14] | Yang Y, Li S S, Li C, et al. Research on ultrasonic signal processing algorithm based on CEEMDAN joint wavelet packet thresholding. Measurement, 2022, 2.1: 111751 |
[15] | 马星河, 孔卫东, 李自强, 等. 一种基于 S_VMD 与 Sdr_SampEn 的局部放电信号去噪方法. 电力系统保护与控制, 2022, 50(18): 29-38 |
Ma X H, Kong W D, Li Z Q, et al. A denoising method for partial discharge signals based on S_VMD and Sdr_SampEn. Power System Protection and Control, 2022, 50(18): 29-38 | |
[16] | 周怡娜, 路敬祎, 张勇, 等. VMD-SG-WT 去噪法及其在混沌去噪中的应用. 东北石油大学学报, 2020, 44(4): 113-120; 132; IX |
Zhou Y N, Lu J Y, Zhang Y, et al. Denoising method based on VMD-SG-WT and its application in chaotic denoising. Journal of Northeast Petroleum University, 2020, 44(4): 113-120; 132; IX | |
[17] | 谭秋衡. 时间序列的非平稳性度量及其应用. 武汉: 中国科学院研究生院(武汉物理与数学研究所), 2013 |
Tan Q H. Measurement of Nonstationarity in Time Series and Its Applications. Wuhan: Graduate School of the Chinese Academy of Sciences (Wuhan Institute of Physics and Mathematics), 2013 | |
[18] | 张聪, 丁义明. 基于重对数律的非平稳性度量. 数学物理学报, 2023, 43A(6): 1855-1868 |
Zhang C, Ding Y M. Non-stationarity measure based on logarithmic law. Acta Math Sci, 2023, 43A(6): 1855-1868 | |
[19] | 谭秋衡, 吴量, 李波. 基于 EMD 及非平稳性度量的趋势噪声分解方法. 数学物理学报, 2016, 36A(4): 783-794 |
Tan Q H, Wu L, Li B. Trend noise decomposition method based on EMD and non-stationarity measurement. Acta Math Sci, 2016, 36A(4): 783-794 | |
[20] | Li S, Qin N, Huang D, et al. Damage localization of Stacker's track based on EEMD-EMD and DBSCAN cluster algorithms. IEEE Trans Instrum Meas, 2020, 69: 1981-1992 |
[21] | Torres M, Colominas M A, Schlotthauer G, et al. A complete ensemble empirical mode decomposition with adaptive noise//Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Prague, Czech Republic: IEEE, 2011: 4144-4147 |
[22] | Savitzky A, Golay M J E. Soothing and differentiation of data by simplifying least squares procedures. Anal Chem, 1964, 36: 1627-39 |
[23] | Schafer R W. What is a Savitzky-Golay filter?. IEEE Signal Process Mag, 2011, 28(4): 111-117 |
[24] | Li H, Li S S, Sun J, et al. Ultrasound signal processing based on joint GWO-VMD wavelet threshold functions. Measurement, 2024, 2.6: 114143 |
[25] | Donoho D L, Johnstone I M. Adapting to unknown smoothness via wavelet shrinkage. J Am Stat Assoc, 1995, 90: 1200-1224 |
No related articles found! |
|