Acta mathematica scientia,Series A ›› 2025, Vol. 45 ›› Issue (6): 1791-1805.
Previous Articles Next Articles
Received:2025-02-05
Revised:2025-07-25
Online:2025-12-26
Published:2025-11-18
Contact:
Huifang Jia
E-mail:hf_jia@mails.ccnu.edu.cn
Supported by:CLC Number:
Huifang Jia, Xiangyi Ye. Normalized Solutions to the Schrödinger Equation with Forcing Perturbation Term[J].Acta mathematica scientia,Series A, 2025, 45(6): 1791-1805.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
| [1] | Anderson D L. Stability of time-dependent particlelike solutions in nonlinear field theories. II. J Math Phys, 1971, 12(6): 945-952 |
| [2] |
Antonelli P, Carles R, Silva J D. Scattering for nonlinear Schrödinger equation under partial harmonic confinement. Comm Math Phys, 2015, 334(1): 367-396
doi: 10.1007/s00220-014-2166-y |
| [3] | Bellazzini J, Boussaid N, Jeanjean L, Visciglia N. Existence and stability of standing waves for supercritical NLS with a partial confinement. Comm Math Phys, 2017, 1: 229-251 |
| [4] |
Bré H, Lieb E H. A relation between pointwise convergence of functions and convergence of functionals. Proc Amer Math Soc, 1983, 88: 486-490
doi: 10.1090/proc/1983-088-03 |
| [5] |
Brock F, Solynin A Y. An approach to symmetrization via polarization. Trans Am Math Soc, 2000, 352: 1759-1796
doi: 10.1090/tran/2000-352-04 |
| [6] | Brothers J E, Ziemer W P. Minimal rearrangements of Sobolev functions. J Reine Angew Math, 1988, 384: 153-179 |
| [7] | Buslaev V B, Grikurov V E. Simulation of instability of bright solitons for NLS with saturating nonlinearity. IMACS J Math Comput Simul, 2001, 56: 539-546 |
| [8] |
Carles R, Klein C, Sparber C. On ground state (in-)stability in multi-dimensional cubic-quintic nonlinear Schrödinger equations. Mathematical Modelling and Numerical Analysis, 2023, 57: 423-443
doi: 10.1051/m2an/2022085 |
| [9] | Carles R, Sparber C. Orbital stability vs. scattering in the cubic-quintic Schrödinger equation. Rev Math Phys, 2021, 33(3): Art 2150004 |
| [10] | Cazenave T. Semilinear Schrödinger Equations. Providence, RI: American Mathematical Society, 2003 |
| [11] |
Cazenave T, Lions P L. Orbital stability of standing waves for some nonlinear Schrödinger equations. Comm Math Phys, 1982, 85: 549-561
doi: 10.1007/BF01403504 |
| [12] | Chen S, Baronio F, Soto-Crespo J, et al. Chirped Peregrine solitons in a class of cubic-quintic nonlinear Schrödinger equations. Phys Rev E, 2016, 93(6): Art 062202 |
| [13] |
Desyatnikov A, Maimistov A, Malomed B. Three-dimensional spinning solitons in dispersive media with the cubic-quintic nonlinearity. Phys Rev E, 2000, 61: 3107-3113
doi: 10.1103/PhysRevE.61.3107 |
| [14] |
Fukuizumi R. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete Contin Dyn Syst, 2001, 7: 525-544
doi: 10.3934/dcds.2001.7.525 |
| [15] | Gou T X. Existence and orbital stability of standing waves to nonlinear Schrödinger system with partial confinement. J Math Phys, 2018, 59: Art 071508 |
| [16] |
Guo Y J, Li S, Wei J C, Zeng X Y. Ground states of two-component attractive Bose-Einstein condensates I: Existence and uniqueness. J Funct Anal, 2019, 276: 183-230
doi: 10.1016/j.jfa.2018.09.015 |
| [17] |
Guo Y J, Li S, Wei J C, Zeng X Y. Ground states of two-component attractive Bose-Einstein condensates II: Semi-trivial limit behavior. Trans Amer Math Soc, 2019, 371: 6903-6948
doi: 10.1090/tran/2019-371-10 |
| [18] |
Jeanjean L. Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal, 1997, 28: 1633-1659
doi: 10.1016/S0362-546X(96)00021-1 |
| [19] | Jeanjean L, Lu S S. On global minimizers for a mass constrained problem. Calc Var Partial Differential Equations, 2022, 61(6): Article 24 |
| [20] |
Jeanjean L, Lu S S. Normalized solutions with positive energies for a coercive problem and application to the cubic-quintic nonlinear Schrödinger equation. Math Models Methods Appl Sci, 2022, 32: 1557-1588
doi: 10.1142/S0218202522500361 |
| [21] | Kenig C E. Carleman Estimates, Uniform Sobolev Inequalities for Second-order Differential Operators, and Unique Continuation Theorems.//Proceedings of the International Congress of Mathematicians, Vol 1, 2 (Berkeley, Calif, 1986), 948-960. Providence RI: Am Math Soc, 1987 |
| [22] |
Killip R, Murphy J, Visan M. Scattering for the cubic-quintic NLS: Crossing the virial threshold. SIAM J Math Anal, 2021, 53: 5803-5812
doi: 10.1137/20M1381824 |
| [23] |
Killip R, Oh T, Pocovnicu O, Visan M. Solitons and scattering for the cubic-quintic nonlinear Schrödinger equation on $\mathbb{R}^{3}$. Arch Ration Mech Anal, 2017, 225: 469-548
doi: 10.1007/s00205-017-1109-0 |
| [24] | Lewin M, Rota Nodari S. The double-power nonlinear Schrödinger equation and its generalizations: uniqueness, non-degeneracy and applications. Calc Var Partial Differential Equations, 2020, 59(6): Art 197 |
| [25] | Li D K, Wang Q X. Thomas-Fermi limit for the cubic-quintic Schrödinger energy with radial potential. arxiv: 2410.14300, 2024 |
| [26] | Lieb E H, Loss M. Analysis, 2nd ed. Providence: American Mathematical Society, 2001 |
| [27] |
Lions P L. The concentration-compactness principle in the calculus of variations. The locally compact case, Part I. Ann Inst H Poincaré C Anal Non Linéaire, 1984, 1: 109-145
doi: 10.4171/aihpc |
| [28] |
Lions P L. The concentration-compactness principle in the calculus of variations. The locally compact case, Part II. Ann Inst H Poincaré C Anal Non Linéaire, 1984, 1: 223-283
doi: 10.4171/aihpc |
| [29] |
Malomed B. Vortex solitons: Old results and new perspectives. Phys D, 2019, 399: 108-137
doi: 10.1016/j.physd.2019.04.009 |
| [30] |
Mihalache D, Mazilu D, Crasovan L, et al. Three-dimensional spinning solitons in the cubic-quintic nonlinear medium. Phys Rev E, 2000, 61: 7142-7145
pmid: 11088411 |
| [31] | Pitaevskii L, Stringari S. Bose-Einstein Condensation. Oxford: Oxford University Press, 2003 |
| [32] |
Pushkarov K, Pushkarov D, Tomov I. Self-action of light beams in nonlinear media: Soliton solutions. Opt Quant Electr, 1979, 11: 471-478
doi: 10.1007/BF00620372 |
| [33] |
Royo-Letelier J. Segregation and symmetry breaking of strongly coupled two-component Bose-Einstein condensates in a harmonic trap. Calc Var Partial Differential Equations, 2014, 49: 103-124
doi: 10.1007/s00526-012-0571-7 |
| [34] |
Shibata M. A new rearrangement inequality and its application for $L^{2}$-constraint minimizing problems. Math Z, 2016, 287: 341-359
doi: 10.1007/s00209-016-1828-1 |
| [35] |
Soave N. Normalized ground state for the NLS equations with combined nonlinearities. J Differential Equation, 2020, 269: 6941-6987
doi: 10.1016/j.jde.2020.05.016 |
| [36] | Soave N. Normalized ground state for the NLS equations with combined nonlinearities: The Soboev critical case. J Funct Anal, 2020, 279: Art 108610 |
| [37] | Stuart C A. Bifurcation for dirichlet problems without eigenvalues. Proc Lond Math Soc, 1982, 1: 169-192 |
| [38] |
Talenti G. Best constant in Sobolev inequality. Ann Mat Pura Appl, 1976, 110: 353-372
doi: 10.1007/BF02418013 |
| [39] |
Tao T, Visan M, Zhang X. The nonlinear Schrödinger equation with combined power-type nonlinearities. Comm Partial Differential Equations, 2007, 32: 1281-1343
doi: 10.1080/03605300701588805 |
| [40] |
Torres P, Konotop V. On the existence of dark solitons in a cubic-quintic nonlinear Schrödinger equation with a periodic potential. Comm Math Phys, 2008, 282(1): 1-9
doi: 10.1007/s00220-008-0527-0 |
| [41] |
Weinstein M I. Nonlinear Schrödinger equations and sharp interpolation estimates. Comm Math Phys, 1983, 87: 567-576
doi: 10.1007/BF01208265 |
| [42] |
Zhang J. Sharp threshold for blow up and global existence in nonlinear Schrödinger equations under a harmonic potential. Comm Partial Differential Equations, 2005, 30: 1429-1443
doi: 10.1080/03605300500299539 |
|
||
