[1] Guo B L, Pu X K, Huang F H.Fractional Partial Differential Equations and Their Numerical Solutions. Singapore: World Scientific Publishing Company, 2015 [2] Min T, Fu W M, Huang Q. Inverse estimates for nonhomogeneous backward heat problems. Ima J Appl Math, 2014, 2014(3): 529618 [3] Le T M, Pham Q H, Luu P H. On an asymmetric backward heat problem with the space and time-dependent heat source on a disk. J Inverse Ill Posed Probl, 2019, 27(1): 103-115 [4] Li M, Jiang T S, Hon Y C. A meshless method based on RBFs method for nonhomogeneous backward heat conduction problem. Eng Anal Bound Elem, 2010, 34(9): 785-792 [5] Hào D N, Duc N V. Stability results for the heat equation backward in time. J Math Anal Appl, 2008, 353(2): 627-641 [6] Rashidinia J, Azarnavid B. Regularization of backward heat conduction problem. Commun Nonlinear Sci Numer Simul, 2012, 17(1): 227-234 [7] Ankita S, Mani M. Spectral graph wavelet regularization and adaptive wavelet for the backward heat conduction problem. Inverse Probl Sci Eng, 2021, 29(4): 457-488 [8] Cheng W, Zhao Q. A modified quasi-boundary value method for a two-dimensional inverse heat conduction problem. Comput Math Appl, 2021, 79(2): 293-302 [9] Xiong X T, Fu C L, Qian Z. Two numerical methods for solving a backward heat conduction problem. Appl Math Comput, 2006, 179(1): 370-377 [10] Zheng G H, Zhang Q G. Recovering the initial distribution for space-fractional diffusion equation by a logarithmic regularization method. Appl Math Lett, 2016, 61: 143-148 [11] Zheng G H, Zhang Q G. Determining the initial distribution in space-fractional diffusion by a negative exponential regularization method. Inverse Probl Sci Eng, 2016, 25(7): 965-977 [12] Zheng G H, Zhang Q G. Solving the backward problem for space-fractional diffusion equation by a fractional Tikhonov regularization method. Math Comput Simul, 2018, 148: 37-47 [13] Zheng G H, Wei T. Two regularization methods for solving a Riesz-Feller space-fractional backward diffusion problem. Inverse Probl, 2010, 26(11): 115017 [14] Cheng H, Fu C L, Zheng G H, et al. A regularization for a Riesz-Feller space-fractional backward diffusion problem. Inverse Probl Sci Eng, 2014, 22(6): 860-872 [15] Zhao J J, Liu S S, Liu T. An inverse problem for space-fractional backward diffusion problem. Math Methods Appl Sci, 2014, 37(8): 1147-1158 [16] Yang F, Li X X, Li D G, et al. The simplified Tikhonov regularization method for solving a Riesz-Feller space-fractional backward diffusion problem. Math Comput Sci, 2017, 11(1): 91-110 [17] Zhang Z Q, Wei T. An optimal regularization method for space-fractional backward diffusion problem. Math Comput Simul, 2013, 92: 14-27 [18] Liu C H, Mo Z W, Wu Z Q. Parameterization of vertical dispersion coefficient over idealized rough surfaces in isothermal conditions. Geosci Lett, 2018, 5(1): 1-11 [19] Zhang H W, Zhang X J. Solving the Riesz-Feller space-fractional backward diffusion problem by a generalized Tikhonov method. Adv Differ Equ, 2020, 2020(1): 376-384 [20] Minh T L, Khieu T T, Khanh T Q, et al. On a space fractional backward diffusion problem and its approximation of local solution. J Comput Appl Math, 2019, 346: 440-455 [21] Cassani D, Vilasi L, Wang Y J. Local versus nonlocal elliptic equations: Short-long range field interactions. Adv Nonlinear Anal, 2021, 10(1): 895-921 [22] Dipierro S, Lippi E P, Valdinoci E.(Non)local logistic equations with Neumann conditions. arXiv:2101.02315 [23] LaMao C D, Huang S B, Tian Q Y, et al. Regularity results of solutions to elliptic equations involving mixed local and nonlocal operators. Aims Math, 2022, 7(3): 4199-4210 [24] DosSantos B C, Oliva S M, Rossi J D. Splitting methods and numerical approximations for a coupled local/nonlocal diffusion model. Computational and Applied Mathematics, 2021, 41(1): Art 6 [25] Slavova A, Popivanov P. Boundary value problems for local and nonlocal Liouville type equations with several exponential type nonlinearities. Radial and nonradial solutions. Adv Differ, 2021, 2021(1): Art 386 [26] Fang Y Z, Shang B, Zhang C. Regularity theory for mixed local and nonlocal parabolic p-Laplace equations. J Geom Anal, 2021, 32(1): Art 22 [27] Fu C L, Xiong X T, Qian Z. Fourier regularization for a backward heat equation. J Math Anal Appl, 2007, 331(1): 472-480 [28] Mugnai D, Lippi E P. On mixed local-nonlocal operators with $(\alpha,\beta)$-neumann conditions. Rend Circ Mat Palermo II.2022, 71: 1035-1048 [29] Biagi S, Dipierro S, Valdinoci E, et al. Mixed local and nonlocal elliptic operators: Regularity and maximum principles. Commun Partial Differ, 2021, 47(3): 585-629 [30] Khieu T T, Khanh T Q. Fractional filter method for recovering the historical distribution for diffusion equations with coupling operator of local and nonlocal type. Numerical Algorithms, 2022, 89: 1743-1767 [31] Li Y H, Zhang H W. Landweber iterative regularization method for an inverse initial value problem of diffusion equation with local and nonlocal operators. AMSE, 2023, 31(1): 2194644 [32] Yang F, Sun Q X, Li X X. Three Landweber iterative methods for solving the initial value problem of time-fractional diffusion-wave equation on spherically symmetric domain. Inverse Probl Sci Eng, 2020, 29(12): 2306-2356 [33] Yang F, Xu J M, Li X X. Regularization methods for identifying the initial value of time fractional pseudo-parabolic equation. Calcolo, 2022, 59: Art 47 [34] Han Y Z, Xiong X T, Xue X M. A fractional Landweber method for solving backward time-fractional diffusion problem. Comput Math Appl, 2019, 78: 81-91 [35] Yang S S, Xiong X T, Han Y Z. A modified fractional Landweber method for a backward problem for the inhomogeneous time-fractional diffusion equation in a cylinder. Int J Comput Math, 2020, 97(11): 2375-2393 [36] Phuong N D,Long L D, Nguyen A T, et al. Regularization of the inverse problem for time fractional pseudo-parabolic equation with non-local in time conditions. Acta Math Sin Engl Ser, 2022, 38(12): 2199-2219 [37] Kirsch A.An Introduction to the Mathematical Theory of Inverse Problems. New York: Springer, 2011 [38] Engl H W, Hanke M, Neubauer A.Regularization of Inverse Problems. New York: Springer, 1996 [39] Vainikko G M, Veretennikov A Y.Iteration Procedures in Ill-Posed Problems. Moscow: Nauka, 1986 [40] Tautenhahn U, Hämarik U, Hofmann B, et al. Conditional stability estimates for ill-posed PDE problems by using interpolation. Numer Funct Anal Optim, 2013, 34(12): 1370-1417 [41] Morozov V A, Nashed Z, Aries A B.Methods for Solving Incorrectly Posed Problems. New York: Springer, 1984 |