[1] Beale J. The initial value problem for the Navier-Stokes equations with a free surface. Commun Pure Appl Math, 1981, 34(3): 359-392 [2] Caflisch R E, Orellana O F. Singular solutions and ill-posedness for the evolution of vortex sheets. SIAM J Math Anal, 1989, 20(2): 293-307 [3] Chandrasekhar S.Hydrodynamic and Hydromagnetic Stability. Oxford: Clarendon Press, 1981 [4] Cheng C H A, Coutand D, Shkoller S. On the motion of vortex sheets with surface tension in three-dimensional Euler equations with vorticity. Commun Pure Appl Math, 2008, 61(12): 1715-1752 [5] Cheng C A, Shkoller S. Solvability and regularity for an elliptic system prescribing the curl, divergence,partial trace of a vector field on Sobolev-class domains. J Math Fluid Mech, 2017, 19(3): 375-422 [6] Christodoulou D, Lindblad H. On the motion of the three surface of a liquid. Commun Pure Appl Math, 2000, 53(12): 1536-1602 [7] Coulombel J F, Morando A, Secchi P, Trebeschi P. A priori estimates for 3D incompressible current-vortex sheets. Commun Math Phys, 2012, 311(1): 247-275 [8] Coutand D, Shkoller S. Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J Am Math Soc, 2007, 20(3): 829-930 [9] Davidson P A.An Introduction to Magnetohydrodynamics. Cambridge: Cambridge University Press, 2001 [10] Ebin D. Ill-posedness of the Rayleigh-Taylor and Helmholtz problems for incompressible fluids. Commun Partial Differ Equ, 1988, 13(10): 1265-1295 [11] Ebin D. The equations of motion of a perfect fluid with free boundary are not well posed. Commun Partial Differ Equ, 1987, 12(10): 1175-1201 [12] Freidberg J P. Ideal Magnetohydrodynamics.New York: Plenum Press, 1987 [13] Goedbloed J, Poids S.Principles of Magnetohydrodynamics with Applications to Laboratory and Astrophysical Plasmas. Cambridge: Cambridge University Press, 2004 [14] Gu X, Wang Y J. On the construction of solutions to the free-surface incompressible ideal magnetohydrodynamic equations. J Math Pures Appl, 2019, 128(9): 1-41 [15] Hao C, Luo T. A priori estimates for free boundary problem of incompressible inviscid magnetohydrodynamic flows. Arch Ration Mech Anal, 2014, 212(3): 805-847 [16] Ladyženskaya O A, Solonnikov V A. Solutions of some non-stationary problems of magnetohydrodynamics for a viscous incompressible fluid. Trudy Mat Inst Steklov, 1960, 59: 115-173 [17] Ladyženskaya O A, Solonnikov V A. The linearization principle and invariant manifolds for problems of magnetohydrodynamics. Zap Naun Sem Leningrad Otdel Mat Inst Steklov, 1973, 38: 46-93 [18] Lian J L. Global well-posedness of the free-surface damped imcompressible Euler equations with surface tension. Commun Math Sci, 2019, 17(3): 587-608 [19] Lian J L.Global well-posedness of the free-interface incompressible Euler equations with damping. Discrete Contin Dyn Syst, 2020 40(4): 2061-2087 [20] Lindblad H. Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann Math, 2005, 162(1): 109-194 [21] Morando A, Trakhinin Y, Trebeschi P. Well-posedness of the linearized plasma-vacuum interface problem in ideal incompressible MHD. Q Appl Math, 2014, 72(3): 549-587 [22] Nalimov V I. The Cauchy-Poisson problem. Dinamika Splošn Sredy, 1974, 254: 104-210 [23] Padula M, Solonnikov V A. On the free boundary problem of magnetohydrodynamics. J Math Sci, 2011, 178(3): 313-344 [24] Roberts P H.An Introduction to Magnetohydrodynamics. London: Longmans, 1967 [25] Shatah J, Zeng C. Geometry and a priori estimates for fluid interface problems. Commun Pure Appl Math, 2008, 61(5): 698-744 [26] Shatah J, Zeng C. A priori estimates for fluid interface problems. Commun Pure Appl Math, 2008, 61(6): 848-876 [27] Shatah J, Zeng C. Local well-posedness for fluid interface problems. Arch Ration Mech Anal, 2011, 199(2): 653-705 [28] Solonnikov V A. Solvability of the problem of the motion of a viscous incompressible fluid that is bounded by a free surface. Math USSR-Izv, 1978, 11(6): 1323-1358 [29] Solonnikov V A. Free boundary problems of magnetohydrodynamics in multi-connected domains. Interfaces Free Bound, 2012, 14(4): 569-602 [30] Solonnikov V A. On a free boundary problem of magnetohydrodynamics for a viscous incompressible fluid not subjected to capillary forces. Contemp Math, 2016, 666: 357-383 [31] Ströhmer G. About an initial-boundary value problem from magnetohydrodynamics. Math Z, 1992, 209: 345-362 [32] Sun Y, Wang W, Zhang Z. Nonlinear stability of current-vortex sheet to the incompressible MHD equations. Commun Pure Appl Math, 2018, 71(2): 356-403 [33] Sun Y, Wang W, Zhang Z. Well-posedness of the plasma-vacuum interface problem for ideal incompressible MHD. Arch Ration Mech Anal, 2019, 234(1): 81-113 [34] Wang Y J. Sharp nonlinear stability criterion of viscous non-resistive MHD internal waves in 3D. Arch Ration Mech Anal, 2019, 231(3): 1675-1743 [35] Wang Y J, Xin Z P. Global well-posedness of free interface problems for the incompressible inviscid resistive MHD. Commun Math Phys, 2021, 388: 1323-1401 [36] Wu S. Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent Math, 1997, 130(1): 39-72 [37] Wu S. Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J Am Math Soc, 1999, 12(2): 445-495 [38] Zhang P, Zhang Z. On the free boundary problem of three-dimensional incompressible Euler equations. Commun Pure Appl Math, 2008, 61(7): 877-940 |