[1] Adona V A, Gonçalves M L. An inexact version of the symmetric proximal ADMM for solving separable convex optimization. Numer Algorithms, 2023, 94(1): 1-28 [2] Adona V A, Gonçalves M L, Melo J G. Iteration-complexity analysis of a generalized alternating direction method of multipliers. J Global Optim, 2019, 73(2): 331-348 [3] Anantachai P, Poom K, Juan M. Augmented Lagrangian method for TV-$l_{1}$-$l_{2}$ based colour image restoration. J Comput Appl Math, 2019, 354: 507-519 [4] Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci, 2009, 2(1): 183-202 [5] Bertsekas D P.Constrained Optimization and Lagrange Multiplier Methods. New York: Academic Press, 1982 [6] Boyd S, Parikh N, Chu E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn, 2011, 3(1): 1-122 [7] Candes E J, Recht B. Exact matrix completion via convex optimization. Commun ACM, 2012, 55(6): 111-119 [8] Chang X K, Yang J F. A golden ratio primal-dual algorithm for structured convex optimization. J Sci Comput, 2021, 87(2): 1-26 [9] Chang X K, Yang J F, Zhang H C. Golden ratio primal-dual algorithm with linesearch. SIAM J Optim, 2022, 32(3): 1584-1613 [10] Chen H M, Gu G Y, Yang J F. A golden ratio proximal alternating direction method of multipliers for separable convex optimization. J Global Optim, 2023, 87(2): 581-602 [11] Chen L, Sun D F, Toh K. An efficient inexact symmetric Gauss-Seidel based majorized ADMM for high-dimensional convex composite conic programming. Math Program, 2017, 161: 237-270 [12] Combettes P L, Wajs V R. Signal recovery by proximal forward-backward splitting. Multiscale Model Simul, 2005, 4: 1168-1200 [13] Douglas J, Rachford H H. On the numerical solution of the heat conduction problem in two and three space variables. Trans Amer Math Soc, 1956, 82: 420-439 [14] Eckstein J, Bertsekas D P. On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math Program, 1992, 55: 293-318 [15] Eckstein J, Yao W. Approximate ADMM algorithms derived from Lagrangian splitting. Comput Optim Appl, 2017, 68: 363-405 [16] Eckstein J, Yao W. Relative-error approximate versions of Douglas-Rachford splitting and special cases of the ADMM. Math Program, 2018, 170(2): 417-444 [17] Eckstein J, Yao W. Understanding the convergence of the alternating direction method of multipliers: Theoretical and computational perspectives. Pac J Optim, 2015, 11(4): 619-644 [18] Fazel M, Pong T K, Sun D F, Tseng P. Hankel matrix rank minimization with applications to system identification and realization. SIAM J Matrix Anal Appl, 2013, 34(3): 946-977 [19] Gabay D. Applications of the method of multipliers to variational inequalities// Fortin M, Glowinski R. Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems. Amsterdam: Elsevier, 1983, 15: 299-331 [20] Gabay D, Mercier B. A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput Math Appl, 1976, 2: 17-40 [21] Gao X, Xu Y Y, Zhang S Z. Randomized primal-dual proximal block coordinate updates. J Oper Res Soc China, 2019, 7(2): 205-250 [22] Glowinski R, Marroco A. Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problémes de dirichlet non linéaires. ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique, 1975, 9: 41-76 [23] Gonçalves M L, Melo J G, Monteiro R D. On the iteration-complexity of a non-Euclidean hybrid proximal extragradient framework and of a proximal ADMM. Optim, 2020, 69(4): 847-873 [24] Gu Y, Jiang B, Han D R. A semi-proximal-based strictly contractive Peaceman-Rachford splitting method. J Comput Math, 2023, 41(6): 1017-1040 [25] Han D R. A survey on some recent developments of alternating direction method of multipliers. J Oper Res Soc China, 2022, 10(1): 1-52 [26] He B S, Liao L Z, Han D R, Yang H. A new inexact alternating directions method for monotone variational inequalities. Math Program, 2002, 92: 103-118 [27] He B S, Liu H, Wang Z R, Yuan X M. A strictly contractive Peaceman-Rachford splitting method for convex programming. SIAM J Optim, 2014, 24: 1011-1040 [28] He B S, Ma F, Yuan X M. Convergence study on the symmetric version of ADMM with larger step sizes. SIAM J Imaging Sci, 2016, 9: 1467-1501 [29] He B S, Ma F, Yuan X M. Optimally linearizing the alternating direction method of multipliers for convex programming. Comput Optim Appl, 2020, 75(2): 361-388 [30] Hestenes M R. Multiplier and gradient methods. J Optim Theory Appl, 1969, 4: 303-320 [31] Jiang F, Wu Z M. An inexact symmetric ADMM algorithm with indefinite proximal term for sparse signal recovery and image restoration problems. J Comput Appl Math, 2023, 417: 114628 [32] Li M, Yuan X M. A strictly contractive Peaceman-Rachford splitting method with logarithmic-quadratic proximal regularization for convex programming. Math Oper Res, 2015, 40(4): 842-858 [33] Li X, Yuan X M. A proximal strictly contractive Peaceman-Rachford splitting method for convex programming with applications to imaging. SIAM J Imaging Sci, 2015, 8(2): 1332-1365 [34] Lions P L, Mercier B. Splitting algorithms for the sum of two nonlinear operators. SIAM J Numer Anal, 1979, 16: 964-979 [35] Ma Y X, Bai J C, Sun H. An inexact ADMM with proximal-indefinite term and larger stepsize. Appl Numer Math, 2023, 184: 542-566 [36] Malitsky Y. Golden ratio algorithms for variational inequalities. Math Program, 2020, 184: 383-410 [37] Monteiro R D, Sim C. Complexity of the relaxed Peaceman-Rachford splitting method for the sum of two maximal strongly monotone operators. Comput Optim Appl, 2018, 70: 763-790 [38] Nocedal J, Wright S J. Numerical Optimization. New York: Springer, 2006 [39] Peaceman D W, Rachford H H. The numerical solution of parabolic and elliptic differential equations. J Soc Ind Appl Math, 1955, 3(1): 28-41 [40] Rockafellar R T. Convex Analysis.Princeton: Princeton Universerty Press, 1970 [41] Rockafellar R T, Wets R. Variational Analysis. Berlin: Springer, 2009 [42] Solodov M V, Svaiter B F. A hybrid approximate extragradient-proximal point algorithm using the enlargement of a maximal monotone operator. Set-Valued Anal, 1999, 7(4): 323-345 [43] Solodov M V, Svaiter B F. An inexact hybrid generalized proximal point algorithm and some new results on the theory of Bregman functions. Math Oper Res, 2000, 25(2): 214-230 [44] Sun M, Liu J. A proximal Peaceman-Rachford splitting method for compressive sensing. J Appl Math Comput, 2016, 50: 349-363 [45] Tao M, Yuan X M. Recovering low-rank and sparse components of matrices from incomplete and noisy observations. SIAM J Optim, 2011, 21(1), 57-81 [46] Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B, 1996, 58: 267-288 [47] Wu Z M, Song Y, Jiang F. Inexact generalized ADMM with relative error criteria for linearly constrained convex optimization problems. Optim Lett, 2024, 18(2): 447-470 [48] Xie J X. On inexact ADMMs with relative error criteria. Comput Optim Appl, 2018, 71(3): 743-765 [49] Xie J X, Liao A P, Yang X B. An inexact alternating direction method of multipliers with relative error criteria. Optim Lett, 2017, 11: 583-596 [50] Xu Y Y. Accelerated first-order primal-dual proximal methods for linearly constrained composite convex programming. SIAM J Optim, 2017, 27(3): 1459-1484 [51] Yang J F, Zhang Y. Alternating direction algorithms for $l_{1}$-problems in compressive sensing. SIAM J Sci Comput, 2011, 33(1): 250-278 [52] Yuan X M. Alternating direction method for covariance selection models. J Sci Comput, 2012, 51: 261-273 [53] Zhou D Q, Xu H W, Yang J F. Proximal alternating direction method of multipliers with convex combination proximal centers. Asia-Pac J Oper Res, 2024, 41(3): 1-28 [54] Zuo H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc Ser B Stat Methodol, 2005, 67(2): 301-320 |