|    
[1]  Antonic N, Lazar M. H-measures and variants applied to parabolic equations. J Math Anal Appl, 2008, 343(1): 207--225 
 
[2]  Dacorogna B. Weak Continuity and Weak Lower Semicontinuity of Nonlinear Functionals. Lecture Notes in Mathematics, Vol 922.  Berlin: Springer, 1982 
 
[3]  DiPerna R J. Measure-valued solutions to conservation laws. Arch Ration Mech Anal, 1985, 88(3): 223--270 
 
[4]  Gerard P. Microlocal defect measures. Comm Partial Differential Equations, 1991, 16(11): 1761--1794 
 
[5]  Hille E, Phillips R S. Functional Analysis and Semi-Groups. American Mathematical Society Colloquium Publications, Vol 31. 
Providence RI:  American Mathematical Society, 1957 
 
[6]  Karlsen K H,  Risebro N H,  Towers J D. L1 stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients. Skr K Nor Vidensk Selsk, 2003, (3): 1--49 
 
[7]  Karlsen K H,  Risebro N H,  Towers J D. Upwind difference approximations for degenerate parabolic convection-diffusion equations with a discontinuous coefficient. IMA J Numer Anal, 2002, 22(4): 623--664 
 
[8]  Karlsen K H, Towers J D. Convergence of the Lax--Friedrichs scheme and stability for conservation laws with a discontinous space-time dependent flux. Chinese Ann Math Ser B, 2004, 25(3): 287--318 
 
[9]  Karlsen K H, Rascle M,  Tadmor E. On the existence and compactness of a two-dimensional resonant system of conservation laws. 
 Commun Math Sci, 2007, 5(2): 253--265 
 
[10]  Kruzkov S N. First order quasilinear equations with several independent variables. Mat Sb (N S), 1970, 81(123): 228--255 
 
[11]  Ladyzhenskaya O A,  Ural'ceva N N. Linear and Quasilinear Elliptic Equations. New York: Academic Press, 1968 
 
[12]  Lions P -L, Perthame B, Tadmor E. A kinetic formulation of multidimensional scalar conservation laws and related equations.  J Amer Math Soc, 1994, 7(1): 169--191 
 
[13]  Panov E Yu. On sequences of measure-valued solutions of a first-order quasilinear equation. Mat Sb, 1994, 185(2): 87--106 
 
[14]  Panov E Yu. On the strong precompactness of bounded sets of measure-valued solutions of a first-order quasilinear equation. 
  Mat Sb, 1995, 186(5): 103--114 
 
[15]  Panov E Yu. Property of strong precompactness for bounded sets of measure-valued solutions of a first-order quasilinear equation. 
 Mat Sb, 1999, 190(3): 427--446 
 
[16]  Panov E Yu. Ultra-parabolic equations with rough coefficients. Entropy solutions and strong precompactness property. Journal of Mathematical Sciences, 2009, 159(2): 180--228 
 
[17]  Panov E Yu. Existence and strong precompactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux.  Arch Ration Mech Anal, 2009, doi:10.1007/s00205-009-0217-x 
 
[18]  Panov E Yu. On the strong pre-compactness property for entropy solutions of a degenerate elliptic equation with discontinuous flux. 
 J Differ Equ, 2009, 247: 2821--2870 
 
[19]  Sazhenkov S A. The genuinely nonlinear Graetz--{N}usselt ultraparabolic equation. Sibirsk Mat Zh, 2006, 47(2): 431--454 
 
[20]  Stein E M. Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No 30. Princeton NJ: Princeton University Press, 1970 
 
[21]  Tadmor E,  Tao T. Velocity averaging, kinetic formulations, and regularizing effects in quasi-linear partial differential equations. 
Commun Pure   Appl  Math, 2008, 61: 1--34 
 
[22]  Tartar L. Compensated compactness and applications to partial differential equations Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol IV.  Boston, Mass: Pitman, 1979: 136--212 
 
[23]  Tartar L. H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations. Proc Roy Soc Edinburgh Sect A, 1990, 115(3/4): 193--230
  |