[1] Arroussi H, Park I, Pau J. Schatten class Toeplitz operators acting on large weighted Bergman spaces. Studia Math, 2015, 229(3): 203-221 [2] Arroussi H, Pau J. Reproducing kernel estimates, bounded projections and dual on large weighted Bergman spaces. J Geom Anal, 2015, 25(4): 2284-2312 [3] Bommier-Hato H, Constantin O. Big Hankel operators on vector-valued Fock spaces in $\mathbb{C}^d$. Integr Equ Oper Theory, 2018, 90: 1-25 [4] Constantin O, Peláez J. Integral operators, embedding theorems and a Littlewood-Paley formula on weighted Fock Spaces. J Geom Anal, 2016, 26: 1109-1154 [5] Galanopoulos P.Schatten class Hankel operators on large Bergman spaces. arXiv:2106.05898 [6] Hörmander L.An Introduction to Complex Analysis in Several Variables. Amsterdam: North-Holland, 1990 [7] Hu Z, Pau J. Hankel operators on exponential Bergman spaces. Science China Math, 2022, 65: 421-442 [8] Hu Z, Virtanen J.IDA and Hankel operators on Fock spaces. Anal PDE, 2023, 16(9): 2041-2077 [9] Hu Z, Virtanen J. Schatten class Hankel operators on the Segal-Bargmann space and the Berger-Coburn phenomenon. Trans Amer Math Soc, 2022, 375(5): 3733-3753 [10] Hu Z, Wang E. Hankel operators between Fock spaces. Integr Equ Oper Theory, 2018, 90(3): Art 37 [11] Isralowitz J. Schatten $p$-class Hankel operators on the Segal-Bargmann space $H^2(\mathbb{C}^n,d\mu)$ for $0<p<1$. J Operator Theory, 2011, 66: 145-160 [12] Li H. Schatten class of Hankel and Toeplitz operators on the Bergman space of strongly pseudoconvex domains. Proc Amer Math Soc, 1993, 119: 1211-1221 [13] Lin P, Rochberg R. Trace ideal criteria for Toeplitz and Hankel operators on the weighted Bergman spaces with exponential type weights. Pacific J Math, 1996, 173: 127-146 [14] Lindhölm N. Sampling in weighted $L^p$ spaces of entire functions in $\mathbb{C}^n$ and estimates of the Bergman kernel. J Funct Anal, 2001, 182: 390-426 [15] Luecking D. Embedding theorems for spaces of analytic functions via Khinchine's inequality. Michigan Math J, 1993, 40: 333-358 [16] Luecking D. Characterizations of certain classes of Hankel operators on the Bergman spaces of the unit disk. J Funct Anal, 1992, 110: 247-271 [17] Marzo J, Ortega-Cerda J. Pointwise estimates for the Bergman kernel of the weighted Fock space. Geom Funct Anal, 2009, 19: 890-910 [18] Oliver R, Pascuas D. Toeplitz operators on doubling Fock spaces. J Math Anal Appl, 2016, 435: 1426-1457 [19] Pau J, Zhao R, Zhu K. Weighted BMO and Hankel operators between Bergman spaces. Indiana Univ Math J, 2016, 65: 1639-1673 [20] Perälä A, Virtanen J. A note on the Fredholm properties of Toeplitz operators on weighted Bergman spaces with matrix-valued symbols. Oper Matrices, 2011, 5: 97-106 [21] Seip K, Youssfi E. Hankel operators on Fock spaces and related Bergman kernel estimates. J Geom Anal, 2013, 23: 170-201 [22] Simon B.Trace ideals and Their Applications. London: Cambridge University Press, 1979 [23] Tu Z, Wang X. Mean oscillation and Hankel operators on Fock-type spaces. Acta Math Sin, 2021, 37(7): 1089-1108 [24] Wang X, Cao G, Zhu K. BMO and Hankel operators on Fock-type spaces. J Geom Anal, 2015, 25: 1650-1665 [25] Xia J, Zheng D. Standard deviation and Schatten class Hankel operators on the Segal-Bargmann space. Indiana Univ Math J, 2004, 53: 1381-1399 [26] Yang Z, Zhou Z. Generalized Volterra-type operators on generalized Fock spaces. Math Nachr, 2022, 295(8): 1641-1662 [27] Zeng Z, Wang, X, Hu Z. Schatten class Hankel operators on exponential Bergman spaces. Rev R Acad Cienc Exactas FÍs Nat Ser A Mat, 2023, 117(1): Art 23 [28] Zhang Y, Wang X, Hu Z. Toeplitz operators on Bergman spaces with exponential weights. Complex Variables Elliptic Equ, 2023, 68(6): 974-1007 [29] Zhu K.Operator Theory in Function Spaces. Providence: American Mathematical Society, 2007 [30] Zhu K.Analysis on Fock Spaces. New York: Springer, 2012 [31] Zhu K. Schatten class Hankel operators on the Bergman space of the unit ball. Amer J Math, 1991, 113: 147-167 |