|   [1]  Anliker M,  Rockwell R, Ogden E. Nonlinear analysis of flow pulses and shock waves in arteries. Z Angew Math Phys,1971, 22:  217--246 
 
[2]  Canic S. Blood flow through compliant vessels after endovascular repair: wall deformations induced by the discontinuous wall properties.  Comput Visualization Sci,  2002, 4: 147--1186 
 
[3]  Canic S, Kim E H. Mathematical analysis of the quasilinear effects in a hyperbolic model of blood flow through compliant axi-symmetric vessels. Math Meth Appl Sci,  2003, 26(14):   1161--1186 
 
[4]  Chen G -Q. Euler Equations and Related Hyperbolic Conservation Laws//Dafermos C M,  Feireisl E, eds.   
Handbook of Differential Equations: Evolutionary Differential Equations, Vol 2. Amsterdam: Elsevier Science,  2005: 1--104 
 
[5]  Chen G -Q, Slemrod M,  Wang D. Isometric immersions and compensated compactness. Commun Math Phys, 2010, 294(2): 411--437 
 
[6]  Chen G -Q, Dafermos C M, Slemrod M,  Wang D. On two-dimensional sonic-subsonic flow. Commun Math Phys, 2007, 271: 635--647 
 
[7]  Clark M E, Kufahl R H. Simulation of the cerebral macrocirculation//Cardiovascular Systems Dynamics.   Cambridge, MA: MIT Press, 1978: 380--390 
 
[8]  Courant R, Friedrichs K O. Supersonic Flow and Shock Waves. New York: Springer-Verlag, 1948 
 
[9]  Dafermos C M.  Hyperbolic Conservation Laws in Continuum Physics. 2nd ed. Berlin: Springer-Verlag,  2005 
 
[10]  Glimm J. Solutions in the large for nonlinear hyperbolic systems of equations. Comm Pure Appl Math, 1965,   18:  697--715 
 
[11]  Glimm J,  Lax P D. Decay of solutions of systems of nonlinear hyperbolic conservation laws. Memoirs Amer Math Soc, 1970, 101 
 
[12]  Kufahl R H, Clark M E. A circle of Willis simulation using distensible vessels and pulsatile flow. J Biomech Eng, 1985, 107:  112--122 
 
[13]  Potter M C,  Foss J F. Fluid Mechanics. New York: The Ronald Press Co, 1975 
 
[14] Quarteroni A, Veneziani A,  Zunino P. Mathematical and numerical modeling of solute dynamics in blood flow 
and arterial walls. SIAM J Numer Anal,  2001/02, 39: 1488--1511 
 
[15]  Ruan W, Clark M E,  Zhao M, Curcio A. A hyperbolic system of equations of blood flow in an arterial network.  SIAM J Appl Math,  2003, 64(2): 637--667 
 
[16]  Ruan W, Clark M E, Zhao M, Curcio A. Global solutions to a hyperbolic problem arising in the modeling of blood flow in circulatory systems. J Math Anal Appl, 2007, 331(2): 1068--1092 
 
[17]  Smith N P, Pullan A J, Hunter P J. An anatomically based model of transient coronary blood flow in the heart.  
SIAM J Appl Math, 2002, 62(3): 990--1018 
 
[18]  Smoller J. Shock Waves and Reaction-Diffusion Equations. 2nd ed. New York: Springer-Verlag, 1994 
 
[19]  Yuan S W. Foundation of Fluid Mechanics. Englewood Cliffs, N J: Prentice-Hall, Inc, 1967
  |