|   [1]  Alexander J, Gardner R, Jones C. A topological invariant arising in the stability analysis of  travelling waves. 
J Reine Angew Math, 1990, 410: 167--212 
 
[2]  Azevedo A, Marchesin D, Plohr B, Zumbrun K.  Nonuniqueness of solutions of Riemann problems. Z Angew Math Phys, 1996, 47(6): 977--998 
 
[3]  Alexander J C, Sachs R. Linear instability of solitary waves of a Boussinesq-type equation: a computer assisted computation. Nonlinear World, 1995, 2(4): 471--507 
 
[4]  Anderson J E. Magnetohydrodynamic Shock Waves. MIT Press, 1963 
 
[5]  Barker B, Humpherys J, Rudd K, Zumbrun K. Stability of viscous shocks in isentropic gas dynamics. Comm Math Phys, 2008, 281(1):  231--249 
 
[6]  Barker B, Humpherys J, Zumbrun K. One-dimensional stability of parallel shock layers in isentropic magnetohydrodynamics. Preprint, 2007 
 
[7]  Beck M, Sandstede B, Zumbrun K. Nonlinear stability of time-periodic shock waves. To appear, Arch Rat Mechanics Anal 
 
[8]  Beyn  W -J. The numerical computation of connecting orbits in dynamical systems. IMA J Numer Analysis,  1990, 9: 379--405 
 
[9]  Beyn W -J. Zur stabilit at von differenenverfahren f\"ur systeme linearer gewöhnlicher randwertaufgaben. 
Numer Math, 1978, 29: 209--226 
 
[10]  Cabannes H. Theoretical Magnetofluiddynamics. New York:  Academic Press, 1970 
  
 
[11]  Batchelor G K. An Introduction to Fluid Dynamics. Cambridge: Cambridge University Press, 1999 
 
[12]  Blokhin A, Trakhinin Y. Stability of strong discontinuities in fluids and MHD//Handbook of mathematical fluid dynamics, Vol I. Amsterdam: North-Holland, 2002: 245--652 
 
[13]  Bridges T J, Derks G, Gottwald G. Stability and instability of solitary waves of the fifth-order KdV equation: a numerical framework.  Phys D, 2002, 172(1-4): 190--216 
 
[14]  Brin L Q. Numerical testing of the stability of viscous shock waves. PhD thesis, Indiana University, oomington, 1998 
 
[15]  Brin L Q.  Numerical testing of the stability of viscous shock waves. Math Comp, 2001, 70(235): 1071--1088 
 
[16]  Brin L Q, Zumbrun K. Analytically varying eigenvectors and the stability of viscous shock  waves. Mat Contemp, 2002, 22: 19--32. Seventh Workshop on Partial Differential Equations, Part I (Rio de Janeiro, 2001) 
 
[17]  Conley C C,  Smoller J. On the structure of magnetohydrodynamic shock waves. Comm Pure Appl Math,  1974, 27: 367--375 
 
[18]  Conley C C, Smoller J. On the structure of magnetohydrodynamic shock waves II. J Math Pures Appl, 1975, 9(4):  429--443 
 
[19]  Costanzino N, Humpherys J, Nguyen T, Zumbrun K. Spectral stability of noncharacteristic boundary layers of 
isentropic Navier--Stokes equations. Arch Ration Mech Anal, to appear, 2008 
 
[20]  Diehl  D,  Rohde C. On the Structure of MHD Shock Waves in Diffusive-Dispersive Media. Preprint 34, Albert-Ludwigs-Universitt Freiburg, Fakultt fr Mathematik und Physik, Mathematisches Institut, 2002 
 
[21]  Evans J W,  Feroe J A. Traveling waves of infinitely many pulses in nerve equations. Math Biosci, 1977, 37: 23--50 
 
[22]  Freistühler H. Dynamical stability and vanishing viscosity: a case study of a non-strictly hyperbolic system. 
  Comm Pure Appl Math, 1992, 45(5): 561--582 
 
[23]  Freistühler H,  Rohde D. The bifurcation analysis of the MHD Rankine-Hugoniot equations for a perfect gas. 
Phys D, 2003, 185(2): 78--96 
 
[24]  Freistühler H. Rohde C. Numerical computation of viscous profiles for hyperbolic conservation laws. Math Comp, 2002, 71(239):  1021--1042 
 
[25]  Freistühler H, Szmolyan P. Existence and bifurcation of viscous profiles for all intermediate netohydrodynamic shock waves. SIAM J Math Anal, 1995, 26(1):  112--128 
 
[26]  Freistühler H, Trakhinin Y. On the viscous and inviscid stability of magnetohydrodynamic shock waves. 
Physica D: Nonlinear Phenomena, 2008, 237(23): 3030--3037 
 
[27]  Freistühler H, Zumbrun K. Examples of unstable viscous shock waves. Unpublished research report, University of Aachen, Germany, 1998 
 
[28]  Gardner R A, Zumbrun K. The gap lemma and geometric criteria for instability of viscous shock  profiles. 
Comm Pure Appl Math,1998, 51(7): 797--855 
 
[29]  Gardner R, Jones C K R T. A stability index for steady state solutions of boundary value problems for parabolic systems. J Diff Eqs,  1991, 91(2): 181--203 
 
[30]  Gardner R,  Jones C K R T. Traveling waves of a perturbed diffusion equation arising in a phase field model. 
Indiana  Univ Math J, 1989, 38(4): 1197--1222 
 
[31]  Germain P. Contribution \`a la th\'eorie des ondes de choc en magn\'etodynamique des fluides. ONERA Publ No 97, Office Nat tudes et Recherche Arospatiales, Ch\^atillon, 1959 
 
[32] Gilbarg  D. The existence and limit behavior of the one-dimensional shock layer. Amer J Math, 1951, 73: 256--274 
 
[33]  Guès O, M\'etivier G, Williams M, Zumbrun K. Navier--Stokes regularization of multidimensional Euler shocks. 
Ann Sci École Norm Sup, 2006, 39(4): 75--175 
 
[34]  Gues O, M{\'e}tivier G, Williams M, Zumbrun K. Viscous boundary value problems for symmetric systems with variable multiplicities. J Differential Equations, 2008, 244(2): 309--387 
 
[35]  Henry  D. Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics. Berlin: Springer--Verlag, 1981 
 
[36]  Howard P, Raoofi M. Pointwise asymptotic behavior of perturbed viscous shock profiles. Adv Differential Equations, 2006, 11(9): 1031--1080 
 
[37]  Howard P, Raoofi M, Zumbrun K. Sharp pointwise bounds for perturbed viscous shock waves. J Hyperbolic Differ Equ, 2006, 3(2): 297--373 
 
[38]  Howard P, Zumbrun K.  Staiblity of undercompressive shocks. J Differential Equations, 2006, 225(1):  308--360 
 
[39]  Humpherys J, Zumbrun K. Spectral stability of small amplitude shock profiles for dissipative symmetric hyperbolic--parabolic systems. Z Angew Math Phys, 2002, 53:  20--34 
 
[40]  Humpherys J, Zumbrun K. An efficient shooting algorithm for evans function calculations in large systems. 
 Physica D, 2006, 220(2): 116--126 
 
[41]  Humpherys J, Lafitte O, Zumbrun K. Stability of viscous shock profiles in the high Mach number limit. Comm Math Phys, to appear, 2009 
 
[42]  Humpherys J, Lyng G, Zumbrun K. Spectral stability of ideal-gas shock layers. Arch Ration Mech Anal, to appear, 2009 
 
[43]  Humpherys J, Lyng G, Zumbrun K. Multidimensional spectral stability of large-amplitude navier-stokes   shocks. In preparation, 2009 
 
[44]  Howard P.  Nonlinear stability of degenerate shock profiles. Differential Integral Equations, 2007, 20(5): 515--560 
 
[45]  Howard P,  Zumbrun K. The Evans function and stability criteria for degenerate viscous shock waves. 
Discrete Contin Dyn Syst, 2004, 10(4): 837--855 
 
[46]  Hale N, Moore  D R. A sixth-order extension to the matlab package bvp4c of j. kierzenka and l. shampine. 
Technical Report NA-08/04, Oxford University Computing Laboratory, May 2008 
 
[47]  Jeffrey A.  Magnetohydrodynamics. University Mathematical Texts, No 33. Oliver \& Boyd, Edinburgh, 1966 
 
[48]  Kato T. Perturbation Theory for Linear Operators.  Classics in Mathematics. Berlin: Springer-Verlag, 1995 
 
[49]  Kawashima S. Systems of a hyperbolic--parabolic composite type, with applications to the equations of magnetohydrodynamics  
[D]. Kyoto University, 1983 
 
[50]  Kierzenka J, Shampine L F. A BVP solver that controls residual and error. J Numer Anal Ind Appl Math, 2008,  3(1/2): 27--41 
 
[51]  Mètivier G,  Zumbrun K. Hyperbolic boundary value problems for symmetric systems with variable multiplicities. J Differ Equ, 2005, 211(1): 61--134 
  
  
 
[52]  Majda A. The stability of multidimensional shock fronts. Mem Amer Math Soc, 1983, 275 
 
[53]  Majda A. The existence of multidimensional shock fronts. Mem Amer Math Soc, 1983, 281 
  
 
[54]  Majda  A, Pego R. Stable viscosity matrices for systems of conservation laws. J Diff Eqs, 1985, 56: 229--262 
 
[55]  Mascia C, Zumbrun K. Pointwise {G}reen function bounds for shock profiles of systems with real viscosity. 
Arch Ration Mech Anal, 2003, 169(3): 177--263 
 
[56]  Mascia C, Zumbrun K. Stability of large-amplitude viscous shock profiles of  hyperbolic-parabolic systems. 
Arch Ration Mech Anal, 2004, 172(1): 93--131 
 
[57]  Métivier G, Zumbrun K. Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems. 
Mem Amer Math Soc, 2005, 175(826) 
 
[58]  Oh M,  Zumbrun K. Stability of periodic solutions of viscous conservation laws: analysis of the Evans function. 
Arch Ration Mech Anal, 2002 
 
[59]  Pego R L. Stable viscosities and shock profiles for systems of conservation laws. Trans Amer Math Soc,  1984, 282(2): 749--763 
 
[60]  Pego R L, Smereka P,  Weinstein M I. Oscillatory instability of traveling waves for a KdV-Burgers equation. 
Phys D, 1993, 67(1/3): 45--65 
 
[61]  Plaza R,  Zumbrun K. An Evans function approach to spectral stability of small-amplitude shock profiles. 
J Disc and Cont Dyn Sys, 2004, 10: 885--924 
 
[62]  Raoofi M. Lp asymptotic behavior of perturbed viscous shock profiles. J Hyperbolic Differ Equ, 2005, 2(3): 595--644 
 
[63]  Raoofi M, Zumbrun K. Stability of undercompressive viscous shock profiles of hyperbolic-parabolic systems. 
J Differential Equations, 2009, 246(4): 1539--1567 
 
[64]  Shampine L F, Gladwell I, Thompson S. Solving ODEs with MATLAB. Cambridge: Cambridge University Press, 2003 
 
[65]  Texier B, Zumbrun K. Hopf bifurcation of viscous shock waves in compressible gas dynamics  and MHD. 
Arch Ration Mech Anal, 2008, 190(1): 107--140 
 
[66]  Trakhinin Y. A complete 2D stability analysis of fast MHD shocks in an ideal gas. Comm Math Phys, 2003, 236(1): 65--92 
 
[67]  Zumbrun K. Stability of large-amplitude shock waves of compressible Navier-Stokes equations//Handbook of Mathematical Fluid Dynamics. Vol III. Amsterdam: North-Holland, 2004: 311--533 
 
[68]  Zumbrun K. Multidimensional stability of planar viscous shock waves//Advances in the Theory of Shock Waves, Progr Nonlinear Differential Equations Appl, Vol 47. Boston, MA: Birkhäuser Boston, 2001: 307--516 
 
[69]  Zumbrun K. A local greedy algorithm and higher order extensions for global numerical continuation of analytically varying subspaces. To appear, Quart Appl Math 
 
[70]  Zumbrun K. Numerical error analysis for evans function computations: a numerical gap lemma, centered-coordinate methods, and the unreasonable effectiveness of continuous orthogonalization. Preprint, 2009 
 
[71]  Zumbrun K. Conditional stability of unstable viscous shock waves in compressible gas dynamics and MHD. 
Preprint, 2009 
 
[72]  Zumbrun K. The refined inviscid stability condition and cellular instability of viscous shock waves. Preprint, 2009 
 
[73]  Zumbrun K. Stability of noncharacteristic boundary layers in the standing shock limit. To appear, Trans Amer Math Soc 
 
[74]  Zumbrun K. Stability of viscous detonations in the ZND limit. Preprint, 2009 
 
[75]  Zumbrun K,  Howard P. Pointwise semigroup methods and stability of viscous shock waves. Indiana Univ Math J, 1998, 47(3): 741--871 
 
[76]  Zumbrun K, Serre D. Viscous and inviscid stability of multidimensional planar shock  fronts. Indiana Univ Math J, 1999, 48(3): 937--992
  |