|   [1]  Du Q. Quantized Vortices in Superfluids -a mathematical and computational study. Master Review -(for Lecture Note Series, IMS, NUS, Singapore), 2005, 9 
[2]  Bethuel F, Brezis H, Helein F. Ginzburg-Landau vortices. Boston: Birkhauser, 1994 
[3]  Beaulieu A, Hadiji R. On a class of Ginzburg-Landau equations with weight. Panamer Math J, 1995, 5: 1--33 
[4]  Ding S J, Liu Z H, Yu W H. Pinning of vortices for the Ginzburg-Landau functional with variable coefficient. Appl Math J Chinese Univ Ser B, 1997, 12: 77--88 
[5]  Ding S J, Liu Z H. Asmptotic behavior for minimizers of an anisotropic Ginzburg-Landau functional. Differential and Integral Equations, 2000, 13: 227--254 
[6]  Kou Y L, Ding S J. Critical magnetic field and asymptotic behavior of an anisotropic superconducting thin film. preprint 
[7]  Zhang Y Z, Bao W Z, Du Q. The dynamics and interaction of quantized vortices in Ginzburg-Landau-schr\"{o}dinger equation. SIAM J Appl Math, 2007, 67: 1740--1775 
[8]  Lin F H. Some dynamical properties of Ginzburg-Landau vortices. Comm Pure Appl Math, 1996, 49: 323--359 
[9]  Lin F H. Complex Ginzburg-Landau equations and dynamics of vortices, filaments and codimension 2 submanifold. Comm Pure Appl Math, 1998, 51: 385--441 
[10]  Jian H Y. The dynamical law of Ginzburg-Landau vortices with a pinning effect.  Appl Math Lett, 2000, 13: 91--94 
[11]  Jian H Y, Song B H. Vortex dynamics of Ginzburg-Landau equations in inhomogeneous superconductors. J Diff Eqns, 2001, 170: 123--141 
[12]  Ding S J. Motion of inhomogeneous Ginzburg-Landau vortex and curvature flow (I): 2-D problem. Journal of South China Normal 
University, 2001, 2: 1--11 
[13]  Ding S J. Motion of inhomogeneous Ginzburg-Landau vortex and curvature flow (II): 3-D problem. Journal of South China Normal 
University, 2001, 3: 1--13 
[14]  Jian H Y, Xu X W. The vortex dynamics of a Ginzburg-Landau system under pinning effect. Science in China (series A), 2003, 46: 488--498  |