|   [1]  Ambrosetti A, Rabinowitz P H. Dual variational methods in critical point theory and applications. J Funct Anal, 1973, 14:  349--381 
 
[2]  Ambrosetti A, Struwe M. A note on the problem -Δu=λu+u|u|2*-2. Manuscripta Math, 1986, 54: 373--379 
 
[3]  Atkinson F V, Brezis H, Peletier L A. Nodal solutions of elliptic equations with critical Sobolev exponents. J Diff Equ, 1990, 85: 151--170 
 
[4]  Brezis H, Lieb E. Relation between pointwise convergence of functions and convergence of functionals. Proc Amer Math Soc, 1983, 88:  486--490 
 
[5]  Brezis H, Kato T. Remarks on the Schrödinger operator with singular complex potentials. J Math Pures Appl,1979,  58:  137--151 
 
[6]  Brezis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent. Comm Pure Appl Math, 1983, 36:  437--478 
 
[7]  Cao  D, Peng S. A global compactness result for singular elliptic problems involving critical Sobolev exponent. Proc Amer Math Soc, 2003, 131: 1857--1866 
 
[8]  Cao D, Yan S. Infinitely many solutions for an elliptic problem involving critical Sobolev growth and Hardy potential. Cal Var, 2010, 38: 471--501 
 
[9]  Capozzi A, Fortunato D, Palmieri G. An existence result for nonlinear elliptic problems involving critical Sobolev exponent. Ann Inst H Poincare Anal Non Lineaire, 1985, 2:  463--470 
 
[10]  Cerami G, Solimini S, Struwe M. Some existence results for superlinear elliptic boundary value problems involving critical exponents. J Funct Anal, 1986, 69:  289--306 
 
[11]  Devillanova G, Solomini S. Concentration estimates and multiple solutions to elliptic problems at critical growth. Adv Diff Equ, 2002, 7: 1257--1280 
 
[12]  Devillanova G, Solomini S. A multiplicity result for elliptic equations at critical growth in low dimension. Comm Comtemp Math, 2003, 5: 171--177 
 
[13]  Egnell E. Elliptic boundary value problems with singular coefficients and critical nonlinearities. Indiana Univ Math J, 1989, 38:  235--251 
 
[14]  Ekeland I, Ghoussoub N. Selected new aspects of the calculus of variations in the large. Bull Amer Math Soc, 2002, 39:  207--265 
 
[15]  Fortunato D, Jannelli E. Infinitely many solutions for some nonlinear elliptic problems in symmetrical domains.  Proc Roy Soc Edinburgh Sect A, 1987, 105:  205--213 
 
[16]  Lions P L. The concentration-compactness principle in the calculus of variations: the limit case. Rev Mat Iberoamericana, 1985, 1:  45--121, 145--201 
 
[17]  Pohozaev I. Eigenfunctions of the equation $\Delta u+f(u)=0. Dokl Akad Nauk SSSR, 1965, 165: 33--36 
 
[18]  Pucci P, Serrin J. A general variational identity. Indiana Univ Math J, 1986, 35:  681--703 
 
[19]  Rabinowitz P. Minimax Methods in Critical Points Theory with Applications to Differential Equations. CBMS Series, no 65. Providence, RI: Amer Math Soc, 1986 
 
[20]  Struwe M. A global compactness result for elliptic boundary value problems involving limiting nonlinearities. Math Z, 1984, 187: 511--517 
 
[21]  Willem M. Minimax Theorems. Boston: Birkhäuser, 1996
  |