|   [1]  Guo Z H, Jiang S, Xie F. Global existence and asymptotic behavior of weak solutions to the 1D compressible Navier-Stokes equations with degenerate viscosity coefficient. Asympotic Analysis, 2008, 60:  101--123 
[2] Guo Z H, Zhu C J. Remarkes on one-dimensional compressible Navier-Stokes equations with density-dependent viscosity and vacuum. Acta Mathematica Sinica, English Series, 2010, 26(10):  2015--2030 
[3] Guo Z H, Zhu C J. Global weak solutions and asympotic behavior to 1D compressible Navier-Stokes equations with density-dependent viscosity and vacuum. J Differ  Equ, 2010, 248: 2768--2799 
[4]  Guo Z H, Jiu Q S, Xin Z P. Spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients. SIAM J Math Anal, 2008, 39:  1402--1427 
[5] Hoff D. Global existence for 1D compressible isentropic Navier-Stokes equations in one space dimension with nonsmooth initial data. Proc Roy Soc Edinburgh Sect A, 1986, 103:  301--305 
[6] Hoff  D.Strong convergence to global solutions for multidimensional flows of compressible, viscous fludies with polytropic equations of state and discontinuous initial data. Arch Rational Mech Anal, 1995, 132:  1--14 
 
[7]  Hoff D, Serre D. The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow. SIAM J Appl Math, 1991, 51: 887--898 
 
[8] Hoff D, Liu T P. The inviscid limit for the Navier-Stokes equations of compressible isentropic flow with shock data. Indiana Univ Math J, 1989, 38: 861--915 
 
[9]  Kawashima S. Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics  
[D]. Kyoto, Japan:  Kyoto University,  1983 
 
[10]  Kawashima S, Nishida T. Global solutions to the initial value problem for the equations of one-dimensional motion of viscous 
polytrpic gases. J Math Kyoto Univ, 1981, 21: 825--837 
 
[11]  Liu T P, Xin Z P, Yang T. Vacuum states of compressible flow. Discrete Contin Dynam Systems, 1998, 4: 1--32 
 
[12] Luo T, Xin Z P, Yang T. Interface behavior of compressible Navier-stokes equations with vacuum. SIAM J Math Anal, 2000, 31(6):  1175--1191 
 
[13]  Makina T. On a local existence theorem for the evolution equations of gaseous stars//Nishida T, Mimura H, Fujii H, eds. Patterns and Wave-Qualtiative Anlysis of Nonlinear Differential equations. Amsterdam: North-Holland, 1986:  459--479 
 
[14]  Nishida T. Equations of fluid dynamics-free surface problems. Comm Pure Appl Math, 1986, 39:  221--238 
 
[15]  Okada M, Matusu-Necasova S, Makino T. Free boundary problem for the equation of one dimensional motion of compressible gas with density-dependent viscosity. Ann Univ Ferrara Sez VII (N.S.) 2002, 48:  1--20 
 
[16]  Okada M. Free boundary problem for the equation of one dimensional motion of viscous gas. Japan J Appl Math, 1989, 6: 161--177 
 
[17]  Okada M, Makino T. Free boundary problem for the equation of spherically symmetrical motion of viscous gas. Japan J Appl Math, 1993, 10: 219--235 
 
[18]  Serre D. Sur l'equation mondimensionnelle d'un fluide visqueux, compressible et conducteur de chaleur. C R Acad Sci Paris sèr 1 Math, 1986, 303:  703--706 
 
[19]  Serre D. Solutions faibles globales des equations de Navier-Stokes equations pour un fluide compressible. C R Acad Sci Paris sér 1 Math, 1986, 303: 639--642 
 
[20]  Xin Z. Blow-up of smooth solutions to the comprssible Navier-Stokes equation with compact density. Comm Pure Appl  Math, 1998, 51:  229--240 
 
[21]  Xin Z. Zero dissipation limit to rarefaction Waves for one-dimensional Navier-Stokes equations for compressible isentropic gases. Comm Pure Appl Math, 1993, 46:  621--665 
 
[22] Yang T, Zhao H J. A vacuum problem for the one-dimensional compressible Navier-Stokes equations with density-dependent 
viscocity. J Diff Eqns,  2002, 184:  163--184 
 
[23]  Yao L, Wang W J. Compressible Navier-Stokes equations with density-dependent viscosity, vacuum and gravitational force in the case of general pressure. Acta Math Sci, 2008, 28B(4): 801--817  |