|   [1]  Aubin T, Bahri A. Une hypothèse topologique pour le problème de la courbure scalaire prescrite. J Math Pures Appl, 1997, 76(10):  843--850 
[2]  Bahri A. Critical Point at Infinity in Some Variational Problems. Pitman Res Notes Math, Ser 182. Harlow:  Longman Sci Tech, 1989 
[3]  Bahri A.  An invariant for Yamabe-type flows with applications to scalar-curvature problems in high dimension. Duke Math J, 1996, 81: 323--466 
[4]  Bahri  A, Coron J M. The scalar curvature problem on the standard three dimensional spheres. J Funct Anal, 1991, 95: 106--172 
[5]  Bahri  A, Rabinowtiz P H. Periodic solutions of hamiltonian systems of three-body type.  Ann Inst H Poincar Anal Non Linear, 1991,  8: 561--649  
 
[6]  Ben Ayed M, Chen Y, Chtioui H, Hammami M. On the prescribed scalar curvature problem on 4-manifolds. Duke Math J, 1996, 84: 633--677  
 
[7]  Ben Ayed M, Hammami M. On a Fourth order Elliptic Equation with critical nonlinearity in dimension Six. Nonlinear Anal TMA, 2006, 64:  924--957  
 
[8]  Ben Mahmoud R, Chtioui H. Existence results for the prescribed scalar curvature on S3.  Annales de l'Institut Fourier, (to appear) 
 
[9]  Ben Souf A, Chtioui  H. Conformal metrics with prescribed Q-curvature on Sn.  Calculus of Variations and PDE, DOI  10.1007/s00526-010-0372-9 
 
[10]  Bernis H,  Garcia-Azorero J, Peral I. Existence and Multiplicity of nontrivial solutions in semilinear critical problems. Adv Diff Eq,  1996, 1: 219--240 
[11]  Bouchech  Z, Chtioui H. Multiplicity and Existence Results for a nonlinear elliptic equation with Sobolev exponent. Adv  Nonlinear Stud, 2010, 10:  537--571 
[12]  Branson T P. Group representations arising from Lorentz conformal geometry. J Funct Anal, 1987, 74:  199--291  
 
[13]  Branson T P, Chang  S Y A,  Yang P. Estimates and extremal problem for the log-determinant on 4-manifolds. Comm Math Phys,   1992,  149: 241--262  
 
[14]  Brezis H, Coron J M. Convergence of solutions of H-systems or how to blow bubbles. Arch Rational Mech Anal, 1985, 81:  21--56  
 
[15]  Chang S A. On a fourth order PDE in conformal geometry. Chicago Lectures in Math Chap, 1999, 8: 127--150  
 
[16]  Chang  S A, Yang P. A perturbation result in prescribing scalar curvature on Sn. Duke Math J, 1991, 64: 27--69  
 
[17]  Chang S A, Yang  P. Extremal metrics of zeta functional determinant on 4-manifolds. Ann Math, 1995, 142: 171--212  
 
[18]  Chang S A, Yang P. On a fourth order curvature invariant//Branson T, ed. Comtemporary Mathematics. Spectral Problems in Geometry and Arithmetics, 237. Amer Math Soc, 1999: 9--28  
 
[19]  Chang S A, Gursky M J, Yang  P. Regularity of a fourth order non-linear PDE with critical exponent. Amer J  Math, 1999, 121: 215--257  
 
[20]  Chang S A, Qing  J, Yang  P. Compactification for a class of conformally flat 4-manifolds. Invent Math, 2000, 142: 65--93  
 
[21]  Chtioui H. Prescribing the scalar curvature problem on three and four dimensions manifolds. Adv  Nonlinear Stud, 2003, 3: 457--470  
 
[22]  Djadli Z, Hebey  E, Ledoux  M. Paneitz-type operators and applications. Duke Math J, 2000, 104:  129--169  
 
[23]  Djadli Z, Malchiodi  A, Ould Ahmedou M. Prescribing a fourth order conformal invariant on the standard sphere, Part I: A perturbation result. Comm Cont Math, 2002, 4: 375--408  
 
[24]  Djadli Z, Malchiodi  A, Ould Ahmedou M. Prescribing a fourth order conformal invariant on the standard sphere, Part II: Blow up analysis and Applications. Annali della Scola Normale Sup di Pisa, 2002, 5: 378--434  
 
[25]  Esposito P, Robert F. Montain pass Critical points for Paneitz-Branson operators. Cala Var Partial Diff Equ, 2002, 15: 493--517  
 
[26]  Hebey E, Robert F. Coercivity and Strew's Compactness for Paneitz type operators with constant coefficients.  Cala Var Part Diff Equ, 2001, 13: 491--517  
 
[27]  Li Y Y. Prescribing scalar curvature on Sn and related topics, Part I. J Diff  Equ, 1995, 120: 319--410  
 
[28]  Li Y Y. Prescribing scalar curvature on Sn and related topics, Part II.  Comm Pure Appl Math, 1996, 49: 437--477  
 
[29]  Lions P L. The Concentration Compactness Principle in the calculus of variations. The limit case, I, II. Rev Math Iberoamericana,  
1985, 1:  165--201; 45--121 
 
[30]  Milnor J. Lectures on the h-cobordism Theorem. Princeton University Press, 1965 
 
[31]  Rey O. The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent. J Funct Anal, 1990, 89:  1--52 
 
[32]  Schoen R. Courses at Stanford University (1988) and New York University (1989).  unpublished 
 
[33]  Schoen R, Zhang D. Prescribed scalar curvature on the n-sphere. Cala Var Part Diff  Equ, 1996, 4: 1--25 
[34]  Struwe M. A global compactness result for elliptic boundary value problems  involving limiting nonlinearities. Mathematische 
Zeitschrift, 1984, 187:  511--517  |