|   [1] Adams D R. A note on Riesz potentials. Duke Math, 1975, 42: 765–778 
[2] Akbulut A, Guliyev V S, Mustafayev R. On the Boundedness of the maximal operator and singular integral 
operators in generalized Morrey spaces. Math Bohem, 2012, 137(1): 27–43 
[3] Alphonse A M. An end point estimate for maximal commutators. J Fourier Anal Appl, 2000, 6(4): 449–456 
[4] Burenkov V, Gogatishvili A, Guliyev V S, Mustafayev R. Boundedness of the fractional maximal operator 
in local Morrey-type spaces. Complex Var Elliptic Equ, 2010, 55(8–10): 739–758 
[5] Fefferman C. The uncertainty principle. Bull Amer Math Soc, 1983, 9: 129–206 
[6] Folland G B. Subelliptic estimates and function spaces on nilpotent Lie groups. Ark Mat, 1975, 13: 
161–207 
[7] Folland G B, Stein E M. Hardy Spaces on Homogeneous Groups. Math Notes, 28. Princeton: Princeton 
Univ Press, 1982 
[8] Giaquinta M. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton, 
NJ: Princeton Univ Press, 1983 
[9] Guliyev V S. Integral operators on function spaces on the homogeneous groups and on domains in Rn (in 
Russian) [D]. Moscow: Mat Inst Steklova, 1994: 1–329 
[10] Guliyev V S. Function spaces, Integral Operators and TwoWeighted Inequalities on Homogeneous Groups. 
Some Applications (Russian). Baku: ELM, 1996 
[11] Guliyev V S. Boundedness of the maximal, potential and singular operators in the generalized Morrey 
spaces. J Inequal Appl, 2009, Art ID 503948, 20 pp. 
[12] Guliyev V S, Mustafayev R. Fractional integrals in spaces of functions defined on spaces of homogeneous 
type. Anal Math, 1998, 24(3): 181–200 
[13] Guliyev V S, Aliyev S, Karaman T, Shukurov P. Boundedness of sublinear operators and commutators on 
generalized Morrey spaces. Integral Equations Operator Theory, 2011, 71(3): 327–355 
[14] Kaplan A. Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratics 
forms. Trans Amer Math Soc, 1980, 258: 147–153 
[15] Kurata K, Sugano S. A remark on estimates for uniformly elliptic operators on weighted Lp spaces and 
Morrey spaces. Math Nachr, 2000, 209: 137–150 
[16] Li H Q. Estimations Lp des operateurs de Schr¨odinger sur les groupes nilpotents. J Funct Anal, 1999, 
161: 152–218 
[17] Liu Yu. The weighted estimates for the operators V (−G + V )− and V ∇G(−G + V )− on the 
stratified Lie group G. J Math Anal Appl, 2009, 349: 235–244 
[18] Lu G Z. A FeffermanPhong type inequality for degenerate vector fields and applications. Panamer Math 
J, 1996, 6: 37–57 
[19] Lu G, Lu Sh, Yang D, Singular integrals and commutators on homogeneous groups. Anal Math J, 2002, 
28: 103–143 
[20] Morrey C B. On the solutions of quasi-linear elliptic partial differential equations. Trans Amer Math Soc, 
1938, 43: 126–166 
[21] Nakai E. Hardy-Littlewood maximal operator, singular integral operators and Riesz potentials on generalized 
Morrey spaces. Math Nachr, 1994, 166: 95–103 
[22] Nakai E. The Campanato, Morrey and H¨older spaces on spaces of homogeneous type. Studia Math, 2006, 
176 (1): 1–19 
[23] Polidoro S, Ragusa M A. Holder regularity for solutions of ultraparabolic equations in divergence form. 
Potential Analysis, 2001, 14(4): 341–350 
[24] Shen Z W. Lp estimates for Schr¨odinger operators with certain potentials. Ann Inst Fourier (Grenoble), 
1995, 45: 513–546 
[25] Stein E M. Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals. Princeton, 
New Jersey: Princeton Univ Press, 1993 
[26] Str¨omberg J O, Torchinsky A.Weighted Hardy Spaces. Lecture Notes in Math, Vol 1381. Berlin: Springer- 
Verlag, 1989 
[27] Sugano S. Estimates for the operators V (− + V )− and V ∇(− + V )− with certain nonnegative 
potentials V . Tokyo J Math, 1998, 21: 441–452 
[28] Varopoulos N, Saloff-Coste L, Coulhon T. Analysis and Geometry on Groups. Cambridge Univ Press, 
1992 
[29] Zhong J P. Harmonic analysis for some Schr¨odinger type operators [D]. Princeton University, 1993  |