|    
[1]  Bahouir H. Non prolongment unique des solutions d'operatteurs. Ann Inst Fourier Grenable, 1986, 36(4): 137--155 
 
[2]  Balogh Z M, Tyson J T. Polar coordinates in Carnot groups. Math Z, 2002, 241(4): 697--730 
 
[3]  Capogna L, Danielli D, Garofalo N. Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations. Amer J Math, 1997, 118: 1153--1196 
 
[4]  D'Ambrosio L. Hardy type inequalities related to degenerate differential operators. Annali della Scuola Normale Superiore di Pisa, 2005, 4(3): 451--486 
 
[5]  Folland G B. Subelliptic estimates and function spaces on nilpotent Lie groups. Ark Mat, 1975, 13(2): 161--207 
 
[6]  Folland G B, Stein E M. Hardy Spaces on Homogeneous Groups. Princeton, New Jersy: Princeton University Press, 1982 
 
[7]  Gallardo L C. Mouvement brownien et probl\`{e}me de lépine de Lebesgue sur les groupes de Lie nilpotents//Probability Measures on Groups. Lecture Notes in Math,  Vol  928. Berlin: Springer, 1981: 96--120 
 
[8]  Garofalo N. Unique continuation for a class of elliptic operators which degenerate on a manifold of arbitrary codinension. J Diff Eqs, 1993, 
104: 117--146 
 
[9]  Garofalo N, Lanconelli E. Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation. Ann Inst Fourier, 1990, 40(2): 313--356 
 
[10]  Han J, Dai S Y, Pan Y F. On unique continuation property for the sub-Laplacian in the Heisenberg group. System Science and Mathematics (in Chinese), 2008, 28(1): 99--106 
 
[11]  Heinonen J. Calculus on carnot groups//Fall School in Analysis of Report, Vol 68. Jyväskylä: Jyväskylä University, 1994: 1--31 
 
[12]  Kaplan A. Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms. Trans Amer Math Soc, 1980, 
258: 147--153 
 
[13]  Luo X B. Removable singularities theorems for solutions of quasihomogeneous hypoelliptis equations//Proc Conf Partial Differential Equations and their Applications. Singapore : World Scientific, 1999: 200--210 
 
[14]  Pan Y F.  Unique continuation for Schrodinger operators with singular potential. Comm Part Differ Equa, 1992, 17(5): 953--965 
 
[15]  Zhang H Q, Niu P C, Wang S J. Unique continuation property and Carlemn type estimate for the sub-Laplacian on the Heisenberg group. System Science and Mathematics (in Chinese), 2003, 23(1): 51--57 
 
[16]  Jin K, Chang Q. Remark on unique continuation of solutions to the Stokes and Navier-Stokes equations. Acta Math Sci, 2005, 25B(4): 594--598
  |