|   [1] Abramowitz M, Stegun C A. Handbook of Mathematical Functions with Formulas, Graphs, Mathematical Tables. Applied Mathematics Series, Vol 55. Washington, DC:National Bureau of Standards, 1964 
[2] Alzer H, Felder G. A Turán-type inequality for the gamma function. J Math Anal Appl, 2009, 350:276-282 
[3] Alzer H, Grinshpan A Z. Inequalities for the gamma and q-gamma functions. J Appr Theory, 2007, 144:67-83 
[4] Alzer H, Batir N. Monotonicity properties of the gamma function. Appl Math Lett, 2007, 20:778-781 
[5] Askey R. The q-gamma and q-beta functions. Appl Anal, 1978, 8:125-141 
[6] Elezovic N, Giordano C, Pecaric J. Convexity and q-gamma function. Rendiconti del Circolo Matematico di Palermo, Series II, 1999, 48:285-298 
[7] Gao P. Some monotonicity properties of gamma and q-gamma functions. ISRN Math Anal, 2011, 2011:1-15 
[8] Grinshpan A Z, Ismail M E H. Completely monotonic functions involving the gamma and q-gamma functions. Proc Amer Math Soc, 2006, 134:1153-1160 
[9] Ismail M E H, Muldoon M E. Inequalities and monotonicity properties for gamma and q-gamma functions//Zahar R V M, ed. Approximation and Computation, International Series of Numerical Mathematics. Boston, MA:Birkhauser, 1994, 119:309-323 
[10] Ismail M E H, Lorch L, Muldoon M E. Completely monotonic functions associated with the gamma function and its q-analogues. J Math Anal Appl, 1986, 116:1-9 
[11] Krattenthaler C, Srivastava H M. Summations for basic hypergeometric series involving a q-analogue of the digamma function. Comput Math Appl, 1996, 32(2):73-91 
[12] Moak D S. The q-analogue of Stirling's formula. Rocky Mountain J Math, 1984, 14:403-413 
[13] Moak D S. The q-gamma function for q > 1. Aequationes Math, 1980, 20:278-285 
[14] Mortici C. Improved asymptotic formulas for the gamma function. Comput Math Appl, 2011, 61:3364-3369 
[15] Mortici C. Estimating gamma function by digamma function. Comput Math Appl, 2010, 52:942-946 
[16] Olde Daalhuis A B. asymptotic expansions of q-gamma, q-exponential and q-Bessel functions. J Math Anal Appl, 1994, 186:896-913 
[17] Salem A. A completely monotonic function involving q-gamma and q-digamma functions. J Appr Theory, 2012, 164:971-980 
[18] Salem A. Some properties and expansions associated with q-digamma function. Quaest Math, 2013, 36(1):67-77 
[19] Salem A. A q-analogue of the exponential integral. Afrika Matematika, 2013, 24(2):117-125 
[20] Salem A. An infinite class of completely monotonic functions involving the q-gamma function. J Math Anal Appl, 2013, 406(2):392-399 
[21] Salem A. Two classes of bounds for the q-gamma and the q-digamma functions in terms of the q-zeta functions. Banach J Math Anal, 2014, 8(1):109-117 
[22] Salem A. Complete monotonicity properties of functions involving q-gamma and q-digamma functions. Math Inequalities Appl, 2014, 17(3):801-811 
[23] Sevli H, Batir N. Complete monotonicity results for some functions involving the gamma and polygamma functions. Math Comput Modelling, 2011, 53:1771-1775 
[24] Wei C, Gu Q. q-generalizations of a family of harmonic number identities. Adv Appl Math, 2010, 45:24-27  |