|   [1] Bianchini S, Bressan A. Vanishing viscosity solutions of nonlinear hyperbolic systems. Ann Math, 2005, 161(1):223-342 
[2] Bressan A, Huang F M, Wang Y, Yang T. On the convergence rate of vanishing viscosity approximations for nonlinear hyperbolic systems. SIAM J Math Anal, 2012, 44(5):3537-3563 
[3] Bressan A, Yang T. On the convergence rate of vanishing viscosity approximations. Comm Pure Appl Math, 2004, 57(8):1075-1109 
[4] Goodman J. Nonlinear asymptotic stability of viscous shock profiles for conservation laws. Arch Rational Mech Anal, 1986, 95(4):325-344 
[5] Goodman J, Xin Z P. Viscous limits for piecewise smooth solutions to systems of conservation laws. Arch Rational Mech Anal, 1992, 121(3):235-265 
[6] Hoff D, Liu T-P. The inviscid limit for the Navier-Stokes equations of compressible isentropic flow with shock data. Indiana Univ Math J, 1989, 38(4):861-915 
[7] Huang F M, Jiang S, Wang Y. Zero dissipation limit of full compressible Navier-Stokes equations with a Riemann initial data. Commun Inf Syst, 2013, 13(2):211-246 
[8] Huang F M, Li X. Zero dissipation limit to rarefaction waves for the 1-D compressible Navier-Stokes equations. Chin Ann Math Ser B, 2012, 33(3):385-394 
[9] Huang F M, Li J, Matsumura A. Asymptotic stability of combination of viscous contact wave with rarefaction waves for one-dimensional compressible Navier-Stokes system. Arch Ration Mech Anal, 2010, 197(1):89-116 
[10] Huang F M, Matsumura A, Xin Z P. Stability of contact discontinuities for the 1-D compressible NavierStokes equations. Arch Ration Mech Anal, 2006, 179(1):55-77 
[11] Huang F M, Pan R H, Wang Y. Stability of contact discontinuity for Jin-Xin relaxation system. J Differ Equ, 2008, 244(5):1114-1140 
[12] Huang F M, Wang Y, Wang Y, Yang T. The limit of the Boltzmann equation to the Euler equations for Riemann problems. SIAM J Math Anal, 2013, 45(3):1741-1811 
[13] Huang F M, Wang Y, Wang Y, Yang T. Vanishing viscosity of isentropic Navier-Stokes equations for interacting shocks. Sci China Math, 2015, 58(4):653-672 
[14] Huang F M, Wang Y, Yang T. Vanishing viscosity limit of the compressible Navier-Stokes equations for solutions to a Riemann problem. Arch Ration Mech Anal, 2012, 203(2):379-413 
[15] Huang F M, Xin Z P, Yang T. Contact discontinuity with general perturbations for gas motions. Adv Math, 2008, 219(4):1246-1297 
[16] Jiang S, Ni G X, Sun W J. Vanishing viscosity limit to rarefaction waves for the Navier-Stokes equations of one-dimensional compressible heat-conducting fluids. SIAM J Math Anal, 2006, 38(2):368-384 
[17] Kawashima S, Matsumura A. Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion. Comm Math Phys, 1985, 101(1):97-127 
[18] Liu T-P, Xin Z P. Pointwise decay to contact discontinuities for systems of viscous conservation laws. Asian J Math, 1997, 1(1):34-84 
[19] Ma S X. Zero dissipation limit to strong contact discontinuity for the 1-D compressible Navier-Stokes equations. J Differ Equ, 2010, 248(1):95-110 
[20] Matsumura A, Nishihara K. On the stability of travelling wave solutions of a one-dimensional model system for compressible viscous gas. Japan J Appl Math, 1985, 2(1):17-25 
[21] Serre D. Global solutions (-∞ [22] Shi X D, Zhang Y L. Vanishing mean free path limit for interacting shock waves of broadwell equation. J Math Anal Appl, 2015, 432(2):868-887 
[23] Smoller J. Shock Waves and Reaction-Diffusion Equations. New York:Springer, 1994 
[24] Wang Y. Zero dissipation limit of the compressible heat-conducting Navier-Stokes equations in the presence of the shock. Acta Math Sci, 2008, 28B(4):727-748 
[25] Xin Z P. Zero dissipation limit to rarefaction waves for the one-dimensional Navier-Stokes equations of compressible isentropic gases. Comm. Pure Appl. Math, 1993, 46(5):621-665 
[26] Xin Z P. Theory of viscous conservation laws//Some Current Topics on Nonlinear Conservation Laws. AMS/IP Stud Adv Math, Vol 15. Providence, RI:Amer Math Soc, 2000:141-193 
[27] Yu S-H. Zero-dissipation limit of solutions with shocks for systems of hyperbolic conservation laws. Arch Ration Mech Anal, 1999, 146(4):275-370 
[28] Zhang Y H, Pan R H, Wang Y, Tan Z. Zero dissipation limit with two interacting shocks of the 1D non-isentropic Navier-Stokes equations. Indiana Univ Math J, 2013, 62(1):249-309 
[29] Zeng H H. Stability of a superposition of shock waves with contact discontinuities for systems of viscous conservation laws. J Differ Equ, 2009, 246(5):2081-2102  |