|    
[1]  Alì G,  Jüngel  A. Global smooth solutions to the multi-dimensional hydrodynamic model for two-carrier plasmas. J Differential Equations,  2003, 190(2):  663--685 
 
[2]  Ancona M G, Tiersten H F.  Microscopic physics of the Silicon inversion layer. Physical Review B,  1987, 35: 7959--7965 
 
[3]  Ancona  M G,  Iafrate G I. Quantum correction to the equation of state of an electron gas in a semiconductor. Physical Review B, 1989,  39: 9536--9540 
 
[4]  Baccarani G,   Wordeman W R. An investigation of steady-state velocity overshoot effects in Si and GaAs devices. Solid State Electronics,  1985, 28: 407--416 
 
[5]  Brezzi F,  Gasser I, Markowich P, Schmeiser C.  Thermal equilibrium state of the  quantum hydrodynamic model for semiconductor in one dimension. Appl Math Lett, 1995, 8:  47--52 
 
[6]  Bohm D. A suggested interpretation of the quantum  theory in terms of ``hidden" valuables: I; II. Phys Rev, 1952, 85: 166--179; 180--193 
 
[7]  Cordier  S, Grenier E. Quasineutral limit of an Euler-Poisson system arising from plasma physics. Comm Partial Differential Equations, 2000,  25: 1099--1113 
 
[8]  Degond P,  Ringhofer C. Quantum moment hydrodynamics and the entropy principle. J Statist Phys, 2003, 112(3/4): 587--628 
 
[9]  Desjardins B,  Lin  C -K,  Tso T -C.  Semiclassical limit of the general derivative nonlinear Schrödinger equation.  Mathematical Models and Methods in Applied Sciences, 2000, (3):  261--285 
  
 
[10]  Ferry D K, Zhou  J -R. Form of the quantum potential for use in hydrdynamic equations for semiconductor device modeling. Phys  Rev B, 1993, 48: 7944--7950 
 
[11]  Feynman R.  Statistical Mechanics, a Set of Lectures.  New York: W A Benjamin, 1972 
 
[12]  Gamba I, Jüngel A.  Positive solutions to singular second and third order differential equations for quantum fluids. Arch Rational Mech Anal, 2001, 156: 183--203 
 
[13]  Gardner C. The quantum hydrodynamic model for semiconductors devices. SIAM J Appl Math, 1994, 54:  409--427 
 
[14] Gardner C, Ringhofer C. Dispersive/hyperbolic models for transport in semiconducotr devices.  accepted for publication in IMA Volumes in Mathematics and its Applications. 
 
[15]  Gasser I. Traveling wave solutions for a quantum hydrodynamic model. Appl Math Lett, 2001, 14(3):  279--283 
 
[16] Gasser I,   Hsiao L,   Li H -L. Large time behavior of solutions of the bipolar hydrodynamical model 
for semiconductors. J Differential Equations, 2003, 192(2):  326--359 
 
[17]  Gasser I, Jüngel A. The quantum hydrodynamic model for semiconductors in thermal equilibrium. 
Z Angew Math Phys, 1997, 48: 45--59 
 
[18]  Gasser I, Lin C -K,  Markowich P. A review of dispersive limits of the (non)linear Schrödinger-type equation. 
Taiwanese J of Math, 2000,  4:  501--529 
 
[19]  Gasser I, Markowich P.  Quantum hydrodynamics, Wigner transforms and the classical limit. Asymptotic Anal,  1997, 14: 97--116 
 
[20]  Gasser I, Markowich P A, Ringhofer C. Closure conditions for classical and quantum moment hierarchies in 
the small temperature limit. Transp Theory Stat Phys, 1996, 25:  409--423 
 
[21]  Gyi  M T,  Jüngel A. A quantum regularization of  the one-dimensional hydrodynamic model for semiconductors. Adv Diff Eqs, 2000, 5: 773--800 
 
[22]  Hao C -C,  Jia Y -L,  Li H -L. Quantum Euler-Poisson system: local existence. J Partial Differential Equations, 2003, 16(4): 306--320 
 
[23]  Huang F,   Li H -L,  Matsumura A. Existence and stability of steady-state of one-dimensional quantum hydrodynamic system for semiconductors. J Differential Equations, 2006, 225(1):  440-464 
 
[24]  Huang F,  Li H -L, Matsumura A, Odanaka S.  Well-posedness and stability of quantum hydrodynamics 
for semiconductors in R3.  preprint 2004 
 
[25]  Jia Y -L,   Li H -L.  Large-time behavior of solutions of quantum hydrodynamic model for semiconductors. Acta Math Sci Ser B,  2006, 26(1): 163--178 
 
[26]  Jüngel A.  Quasi-hydrodynamic Semiconductor Equations.  Progress in Nonlinear Differential Equations and its Applications. Basel: Birkhäuser,  2001 
 
[27]  Jüngel A. A steady-state potential flow Euler-Poisson system for charged quantum fluids. Comm Math Phys, 1998, 194:  463--479 
 
[28]  Jüngel A. Quasi-hydrodynamic semiconductor equations. Progress in Nonlinear Differential Equations. 
Basel:  Birkhäuser,  2001 
 
[29]  Jüngel A,   Li H -L. Quantum Euler-Poisson systems: existence of stationary states.  Archivum  athematicum,  2004,  40(4):  435--456 
 
[30]  Jüngel A,   Li H -L. Quantum Euler-Poisson systems: global existence and  exponential decay. Quarterly Appl Math, 2004, 62(3):  569--600 
 
[31]  Jüngel A,  Li H -L,  Markowich P,  Wang S. Recent progress on quantum hydrodynamic models for emiconductors. Hyperbolic Problems: Theory, Numerics, Applications.  Berlin: Springer,  2003:   217--226 
 
[32]  Jüngel A,  Li H -L, Matsumura A. Stability and relaxation asymptotic of quantum hydrodynamics model in R3. 
J Differential Equations, 2006, 225: 1--25 
 
[33]  Jüngel A,   Mariani M  C, Rial  D. Local existence of solutions to the transient quantum hydrodynamic equations. Math Models Methods Appl Sci,  2002,  12(4):  485--495 
 
[34]  Jüngel A,   Peng  Y -J. A hierarchy of hydrodynamic models for plasma: zero-relaxation-time limits. 
Comm Partial Differential Equations, 1999, 24: 1007--1033 
 
[35]  Klusdahl N,  Kriman A,  Ferry, D,  Ringhofer C. Self-consistent study of the resonant-tunneling diode. 
Phys Rev B, 1989, 39: 7720--7735 
 
[36]  Li H -L,  Lin C -K. Semiclassical limit and well-posedness of nonlinear Schr\"odinger-Poisson. Electronic Journal of Differential Equations, 2003, 2003(93):  1--17 
 
[37]  Li H -L,   Lin C -K. Zero Debye length asymptotic of the quantum hydrodynamic model for semiconductors. 
Comm Math Phys,  2005, 256(1):  195--212 
 
[38]  Li  H -L,  Lin  C -K,   Masmoudi N.  Asymptotics of the compressible non-isentropic Euler-Poisson system 
for small Debye length. preprint 2004 
 
[39]  Li H -L,  Marcati P. Existence and asymptotic behavior of multi-dimensional quantum hydrodynamic model 
for semiconductors. Comm Math  Phys, 2004, 245(20:  215--247 
 
[40]  Li H -L,  Markowich P.   A review of hydrodynamical models for semiconductors:  asymptotic behavior. Bol Soc Brasil Mat (N S), 2001,  32(3): 321--342 
 
[41]  Li H -L,  Zhang  G -J, Zhang M, Hao C -C.  Long-time self-similar asymptotic of the macroscopic quantum models. J Math Phys,  2008, 49: 073503 
 
[42]  Li H -L,  Zhang  G -J,  Zhang K -J. Algebraic time-decay rate for the bipolar quantum hydrodynamic 
model. Math Models Methods Appl Sci,  2008, 18(6):  859--881 
 
[43]  Liang B,   Zhang K -J. The steady-state solution and its asymptotic limits of bipolar quantum hydrodynamic equation for semiconductors.  to appear in Math Models Methods Appl Sci, 
 
[44]  Loffredo M,  Morato L. On the creation of quantized vortex lines in rotating He II. Il Nouvo Cimento, 1993, 108B:  205--215 
 
[45]  Madelung E. Quantentheorie in hydrodynamischer form. Z Physik, 1927, 40:  322 
 
[46]  Markowich P A,  Ringhofer C,  Schmeiser C. Semiconductor Equations.  Wien: Springer, 1990 
 
[47]  Marcati P,  Natalini R.  Weak solution to a hydrodynamic model for semiconductors and relaxation to the 
drift-diffusion equations. Archive Rat Mech Anal, 1995, 129: 129--145 
 
[48]  Peng  Y -J. Some asymptotic analysis in steady-state Euler--Poisson equations for potential flow.  Asymptotic Anal, 2003, 36:  75--92 
 
[49]  Peng  Y -J,   Wang Y -G. Boundary layers and quasi-neutral limit in steady state Euler-Poisson equations for potential flows.  Nonlinearity, 2004, 17(3):  835--849 
 
[50]  Peng  Y -J,    Wang Y -G. Convergence of compressible Euler-Poisson equations to incompressible type Euler equations. Asymptot Anal, 2005, 41(2): 141--160 
 
[51]  Peng Y -J,   Wang  Y -G,  Yong W -A.  Quasi-neutral limit of the non-isentropic Euler-Poisson system. Proc Roy Soc Edinburgh Sect A, 2006, 136(5):  1013--1026 
 
[52]  Slemrod M,  Sternberg N. Quasi-neutral limit for Euler-Poisson system. J Nonlinear Sci, 2001, 11:  193--209 
 
[53]  Unterreiter A.  The thermal equilibrium solution of a generic bipolar quantum hydrodinamic model. Comm Math Phys, 1997, 188:  69--88 
 
[54]  Wang S.  Quasineutral limit of Euler-Poisson system with and without viscosity. Comm Partial Differential 
Equations, 2004, 29(3/4):  419--456 
 
[55]  Wigner E.  On the quantum correction for thermodynamic equilibrium. Phys Rev, 1932,  40:  749--759 
 
[56]  Zhang B,  Jerome J.  On a steady state quantum hydrodynamic model for semiconductors. Nonlinear Anal TMA, 1996, 26: 845--856 
 
[57]  Zhang  G -J,  Li  H -L,  Zhang K -J. The semiclassical and relaxation limits of the bipolar quantum 
hydrodynamic model for semiconductors in R3. J Differential Equations, 2008, 26: 845--856 
 
[58]  Zhang  G -J,  Zhang K -J.  On the bipolar multidimensional quantum Euler-Poisson system: the thermal equilibrium solution and semiclassical limit. Nonlinear Anal TMA,  2007, 66:  2218--2229
  |