|    
[1]  Aaronson J, Denker M. A local limit theorem for stationary processes in the domain of attraction of a normal 
distribution//Balakrinshnan D, Ibragimov I A, Nevzorov V B. Asymptotic methods in probability and statistics with 
applications. St. Petersburg: Birkhäuser, 2001: 215--224 
 
[2]  Aaronson J, Denker M. Local limit theorems for partial sums of stationary sequences generated by Gibbs-Markov maps.  Stoch  Dyn, 2001, 1: 193--237 
 
[3]  Benedicks M, Carleson L. The dynamics of the Henon map. Ann Math, 1991, 133: 73--169 
 
[4]  Breiman L. Probability. Reading: Addison-Wesly, 1968 
 
[5]  Dunford N, Schwartz J T. Linear operators. Part I. General theory. New York: John Wiley & Sons Inc, 1988 
 
[6]  Gouëzel S. Berry-Esseen theorem and local limit theorem for non-uniformly expanding maps. Annales de l'IHP 
Probabilit\'es et Statistiques, 2005, 41: 997--1024 
 
[7]  Gouëzel S. Central limit theorem and stable laws for intermittent maps. Probab Theory and Rel Fields, 2004,  128: 82--122 
 
[8]  Guivarch Y, Hardy J. Théorémes limites pour une classe de chaines de Markov et applicatios aux difféomor- 
phisms d'Anosov.  Ann Inst H Poincaré Probab Statist, 1988, 24: 73--98 
 
[9]  Guivarch Y, Le Jan Y. Asymptotic winding of the geodesic flow on modular surfaces and continuous fractions. Ann scient Éc Norm Sup, 1993,4: 23--50 
 
[10]  Parry W, Pollicott M. Zeta functions and the periodic structure of hyperbolic dynamics. Ast\'erisque, 1990, 187/188: 1--268 
 
[11]  Szász D, Varjú T. Local limit theorem for the Lorentz process and its recurrence in the plane. Ergodic Theory and Dynamical Systems, 2004, 24(1): 257--278 
 
[12]  Young  L S. Statistical properties of dynamical systems with some hyperbolicity. Ann Math, 1998, 147: 585--650
  |