[1] Boulanba L, Mellouk M. Large deviations for a stochastic Cahn-Hilliard equation in Hölder norm. Infin Dimens Anal Quantum Probab Relat Top, 2020, 23(2): 2050010 [2] Budhiraja A, Dupuis P, Maroulas V. Large deviations for infinite dimensional stochastic dynamical systems. Ann Probab, 2008, 36(4): 1390-1420 [3] Cahn J W, Hilliard J E. Free energy of a nonuniform system. I. interfacial free energy. The Journal of Chemical Physics, 1958, 28(2): 258-267 [4] Cardon-Weber C. Cahn-Hilliard stochastic equation: Existence of the solution and of its density. Bernoulli, 2001, 7(5): 777-816 [5] Chai S, Cao Y, Zou Y, Zhao W. Conforming finite element methods for the stochastic Cahn-Hilliard-Cook equation. Appl Numer Math, 2018, 124: 44-56 [6] Chen C. A symplectic discontinuous Galerkin full discretization for stochastic Maxwell equations. SIAM J Numer Anal, 2021, 59(4): 2197-2217 [7] Chen C, Chen Z, Hong J, Jin D.Large deviations principles of sample paths and invariant measures of numerical methods for parabolic SPDEs. arXiv: 2106.11018 [8] Chen C, Hong J, Jin D, Sun L. Asymptotically-preserving large deviations principles by stochastic symplectic methods for a linear stochastic oscillator. SIAM J Numer Anal, 2021, 59(1): 32-59 [9] Chen C, Hong J, Jin D, Sun L. Large deviations principles for symplectic discretizations of stochastic linear Schrödinger equation. Potential Anal, 2023, 59(3): 971-1011 [10] Cui J, Hong J. Absolute continuity and numerical approximation of stochastic Cahn-Hilliard equation with unbounded noise diffusion. J Differential Equations, 2020, 269(11): 10143-10180 [11] Cui J, Hong J. Wellposedness and regularity estimates for stochastic Cahn-Hilliard equation with unbounded noise diffusion. Stoch Partial Differ Equ Anal Comput, 2023, 11(4): 1635-1671 [12] Cui J, Hong J, Sun L. Strong convergence of full discretization for stochastic Cahn-Hilliard equation driven by additive noise. SIAM J Numer Anal, 2021, 59(6): 2866-2899 [13] Dal Maso G.An Introduction to $\Gamma$-Convergence. Boston: Birkhäuser, 1993 [14] Dembo A, Zeitouni O.Large Deviations Techniques and Applications. Berlin: Springer-Verlag, 2010 [15] Elliott C M, Larsson S. Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation. Math Comp, 1992, 58(198): 603-630 [16] Feng X, Li Y, Zhang Y. A fully discrete mixed finite element method for the stochastic Cahn-Hilliard equation with gradient-type multiplicative noise. J Sci Comput, 2020, 83(1): 23-24 [17] Freidlin M I, Wentzell A D.Random Perturbations of Dynamical Systems. New York: Springer-Verlag, second edition, 1998 [18] Furihata D, Kovács M, Larsson S, Lindgren F. Strong convergence of a fully discrete finite element approximation of the stochastic Cahn-Hilliard equation. SIAM J Numer Anal, 2018, 56(2): 708-731 [19] Gyöngy I. Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. I. Potential Anal, 1998, 9(1): 1-25 [20] Hong J, Jin D, Sheng D.Convergence analysis for minimum action methods coupled with a finite difference method. IMA J Numer Anal, 2024, doi: 10.10931imanum/drae038 [21] Hong J, Jin D, Sheng D. Density convergence of a fully discrete finite difference method for stochastic Cahn-Hilliard equation. Math Comp, 2023, 93(349): 2215-2264 [22] Hong J, Jin D, Sheng D, Sun L.Numerically asymptotical preservation of the large deviations principles for invariant measures of Langevin equations. arXiv: 2009.13336 [23] Jin D, Hong J, Sheng D.Convergence analysis of one-point large deviations rate functions of numerical discretizations for stochastic wave equations with small noise. arXiv: 2209.08341 [24] Khoshnevisan D.Analysis of Stochastic Partial Differential Equations. Providence: American Mathematical Society, 2014 [25] Kovács M, Larsson S, Mesforush A. Finite element approximation of the Cahn-Hilliard-Cook equation. SIAM J Numer Anal, 2011, 49(6): 2407-2429 [26] Larsson S, Mesforush A. Finite-element approximation of the linearized Cahn-Hilliard-Cook equation. IMA J Numer Anal, 2011, 31(4): 1315-1333 [27] Novick-Cohen A, Segel L A. Nonlinear aspects of the Cahn-Hilliard equation. Phys D, 1984, 10(3): 277-298 [28] Prévôt C, Röckner M.A Concise Course on Stochastic Partial Differential Equations. Berlin: Springer, 2007 [29] Qi R, Wang X. Error estimates of semidiscrete and fully discrete finite element methods for the Cahn-Hilliard-Cook equation. SIAM J Numer Anal, 2020, 58(3): 1613-1653 [30] Rindler F.Calculus of Variations. Cham: Springer, 2018 [31] Shi K, Tang D, Wang Y. Large deviation for stochastic Cahn-Hilliard partial differential equations. Acta Math Sin Engl Ser, 2009, 25(7): 1157-1174 [32] Wang J, Yang H, Zhai J, Zhang T. Large deviation principles for SDEs under locally weak monotonicity conditions. Bernoulli, 2024, 30(1): 332-345 [33] Zhou L, Li Y. An LDG method for stochastic Cahn-Hilliard type equation driven by general multiplicative noise involving second-order derivative. Commun Comput Phys, 2022, 31(2): 516-547 [34] Zouraris G E. An IMEX finite element method for a linearized Cahn-Hilliard-Cook equation driven by the space derivative of a space-time white noise. Comput Appl Math, 2018, 37(5): 5555-5575 |