[1] Camblong H E, Epele L N, Fanchiotti H, Canal C A G. Quantum anomaly in molecular physics. Phys Rev Lett, 2001, 87(22): Art 220402 [2] Angulo J, Bona J L, Linares F, Scialom M. On the structure of singularities in solutions of the nonlinear Schrödinger equation for the critical case, $p=4/n$//Grosser M, Hörmann G, Kunzinger M, Oberguggenberger M. Nonlinear Theory of Generalized Functions. New York: Routledge, 1999: 3-22 [3] Angulo J, Bona J L, Linares F, Scialom M. Scaling, stability and singularities for nonlinear, dispersive wave equations: the critical case. Nonlinearity, 2002, 15(3): 759-786 [4] Cazenave T. Semilinear Schrödinger Equations.Providence, RI: American Mathematical Society, 2003 [5] Ginibre J, Velo G. On a class of nonlinear Schröinger equations. I. The Cauchy problem, general case. J Funct Anal, 1979, 32(1): 1-32 [6] Laedke E W, Blaha R, Spatschek K H, Kuznetsov E A. On the stability of collapse in the critical case. J Math Phys, 1992, 33(3): 967-973 [7] Merle F. Determination of blow-up solutions with minimal mass for nonlinear Schrödinger with critical power. Duke Math J, 1993, 69(2): 427-453 [8] Merle F, Raphaël P. On universality of blow-up profile for $L^{2}$ critical nonlinear Schrödinger equation. Invent Math, 2004, 156: 565-672 [9] Merle F, Raphaël P. Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation. Commun Math Phys, 2005, 253: 675-704 [10] Weinstein M I. Nonlinear equations and sharp interpolation estimates. Commun Math Phys, 1983, 87: 567-576 [11] Weinstein M I. On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations. Commun Part Diff Equ, 1986, 11(5): 545-565 [12] Campos L, Guzmán C M. On the inhomogeneous NLS with inverse-square potential. Z Angew Math Phys, 2021, 72: Art 143 [13] Okazawa N, Suzuki T, Yokota T. Energy methods for abstract nonlinear Schrödinger equations. Evol Equations Control Theory, 2012, 1(2): 337-354 [14] Suzuki T. Solvability of nonlinear Schrödinger equations with some critical singular potential via generalized Hardy-Rellich inequalities. Funkcial Ekvac, 2016, 59: 1-34 [15] Bensouilah A, Dinh V D, Zhu S H. On stability and instability of standing waves for the nonlinear Schrödinger equation with an inverse-square potential. J Math Phys, 2018, 59: Art 101505 [16] Csobo E. Existence and orbital stability of standing waves to a nonlinear Schrödinger equation with inverse square potential on the half-line. Nonlinear Differ Equ Appl, 2021, 28(54): 1-32 [17] Dinh V D. Global existence and blow-up for a class of the focusing nonlinear Schrödinger equation with inverse-square potential. J Math Anal Appl, 2018, 468(1): 270-303 [18] Csobo E, Genoud F. Minimal mass blow-up solutions for the $L^{2}$-critical NLS with inverse-square potential. Nonlinear Anal, 2018, 168: 110-129 [19] Mukherjee D, Nam P T, Nguyen P T. Uniqueness of ground state and minimal-mass blow-up solutions for focusing NLS with Hardy potential. J Funct Anal, 2021, 281(5): Art 109092 [20] Bao W Z, Cai Y Y. Mathmatical theory and numerical methods for Bose-Einstein condensation. Kinet Relat Models, 2013, 6(1): 1-135 [21] Dalfovo F, Giorgini S, Pitaevskii L P, Stringari S. Theory of Bose-Einstein condensation in trapped gases. Rev Mod Phys, 1999, 71(3): 463-512 [22] Huepe C, Metens S, Dewel G, et al. Decay rates in attractive Bose-Einstein condensates. Phys Rev Lett, 1999, 82(8): 1616-1619 [23] Kagan Y, Muryshev A E, Shlyapnikov G V. Collapse and Bose-Einstein condensation in a trapped Bose gas with negative scattering length. Phys Rev Lett, 1998, 81(5): 933-937 [24] Guo Y J, Seiringer R. On the mass concentration for Bose-Einstein condensates with attractive interactions. Lett Math Phys, 2014, 104: 141-156 [25] Guo Y J, Wang Z Q, Zeng X Y, Zhou H S. Properties of ground states of attractive Gross-Pitaevskii equations with multi-well potentials. Nonlinearity, 2018, 31(3): 957-979 [26] Guo Y J, Zeng X Y, Zhou H S.Concentration behavior of standing waves for almost mass critical nonlinear Schröinger equations. J Diff Equ, 2014, 256(7): 2079-2100 [27] Guo Y J, Zeng X Y, Zhou H S. Energy estimates and symmetry breaking in attractive Bose-Einstein condensates with ring-shaped potentials. Ann Inst H Poincaré Anal Non Linéaire, 2016, 33(3): 809-828 [28] Guo H, Zhou H S. A constrained variational problem arising in attractive Bose-Einstein condensate with ellipse-shaped potential. Appl Math Lett, 2019, 87: 35-41 [29] Zeng X Y. Asympotic properties of standing waves for mass subcritical nonlinear Schrödinger equations. Discrete Contin Dyn Syst, 2017, 37(3): 1749-1762 [30] Kwong M K. Uniqueness of positive solutions of $\Delta u- u+ u^p= 0$ in $\mathbb{R}^n$. Arch Ration Mech Anal, 1989, 105: 243-266 [31] Kang D, Luo J, Shi X. Solutions to elliptic systems involving doubly critical nonlinearities and Hardy-type potentials. Acta Math Sci, 2015, 35B(2): 423-438 [32] Su Y, Liu Z S, Liu S L. Elliptic equation with critical exponent and dipole potential: existence and decay estimates. Acta Math Sci, 2025, 45B(2): 636-658 [33] Omana W, Willem M. Homoclinic orbits for a class of Hamiltonian systems. Diff Int Equ, 1992, 5(5): 1115-1120 [34] Zhang J. Stability of standing waves for nonlinear Schrödinger equations with unbounded potentials. Z Angew Math Phys, 2000, 51: 498-505 [35] Zhang J. Stability of attractive Bose-Einstein condensates. J Stat Phy, 2000, 101: 731-746 [36] Brezis H.Analyse Fonctionnelle: Théorie et Applications. Paris: Masson, 1983 |