[1] Bellomo N, Gibelli L, Quaini A, Reali A. Towards a mathematical theory of behavioral human crowds. Math Models Methods Appl Sci, 2022, 32(2): 321-358 [2] Beaver L E, Malikopoulos A A. An overview on optimal flocking. Annu Rev Control, 2021, 51: 88-99 [3] Couzin I D, Krause J, Franks N R, Levin S A. Effective leadership and decision-making in animal groups on the move. Nature, 2005, 433: 513-516 [4] Leonard N E, Paley D A, Lekien F, et al. Collective motion, sensor networks,ocean sampling. Proc IEEE, 2007, 95(1): 48-74 [5] Park J, Choi H H, Lee J R. Flocking-inspired transmission power control for fair resource allocation in vehicle-mounted mobile relay networks. IEEE Trans Veh Technol, 2019, 68(1): 754-764 [6] Perea L, Gómez G, Elosegui P. Extension of the Cucker-Smale control law to space flight formations. J Guidance Control Dynam, 2009, 32(2): 526-536 [7] Reynolds C W. Flocks, herds,schools: A distributed behavioral model. Comput Graphics, 1987, 21(4): 25-34 [8] Paley D A, Leonard N E, Sepulchre R, et al. Oscillator models and collective motion. IEEE Control Syst Mag, 2007, 27(4): 89-105 [9] Toner J, Tu Y. Flocks, herds,schools: A quantitative theory of flocking. Phys Rev E, 1998, 58(4): 4828-4858 [10] Li C H, Yang S Y. A new discrete Cucker-Smale flocking model under hierarchical leadership. Discrete Contin Dyn Syst Ser B, 2016, 21(8): 2587-2599 [11] Yang T, Meng Z, Shi G, et al. Network synchronization with nonlinear dynamics and switching interactions. IEEE Trans Automat Control, 2016, 61(10): 3103-3108 [12] Ballerini M, Cabibbo N, Candelier R, et al. Interaction ruling animal collective behaviour depends on topological rather than metric distance: Evidence from a field study. Proc Natl Acad Sci, 2008, 105(4): 1232-1237 [13] Martin S. Multi-agent flocking under topological interactions. Syst Control Lett, 2014, 69: 53-61 [14] Cucker F, Dong J G. On flocks influenced by closest neighbors. Math Models Methods Appl Sci, 2016, 26(14): 2685-2708 [15] Dong J G, Ha S Y, Kim D. On the Cucker-Smale ensemble with $q$-closest neighbors under time-delayed communications. Kinet Relat Models, 2020, 13(4): 653-676 [16] Dong J G, Ha S Y, Kim D. On the Cucker-Smale ensemble with the $q$-closest neighbors in a self-consistent temperature field. SIAM J Control Optim, 2020, 58(1): 368-392 [17] Mucha P B, Peszek J. A fuzzy $q$-closest alignment model. Nonlinearity, 2024, 37(8): Article 085007 [18] Cao Y, Ren W, Casbeer D W, Schumacher C. Finite-time connectivity-preserving consensus of networked nonlinear agents with unknown Lipschitz terms. IEEE Trans Automat Control, 2016, 61(6): 1700-1705 [19] Su H, Chen G, Wang X, Lin Z. Adaptive second-order consensus of networked mobile agents with nonlinear dynamics. Automatica, 2011, 47(2): 368-375 [20] Yu W, Chen G, Cao M. Consensus in directed networks of agents with nonlinear dynamics. IEEE Trans Automat Control, 2011, 56(6): 1436-1441 [21] Yu W, Chen G, Cao M, Kurths J. Second-order consensus for multiagent systems with directed topologies and nonlinear dynamics. IEEE Trans Syst Man Cybern B Cybern, 2010, 40(3): 881-891 [22] Wu C W.Synchronization in Complex Networks of Nonlinear Dynamical Systems. Singapore: World Scientific, 2007 [23] Dong J G, Qiu L. Flocking of the Cucker-Smale model on general digraphs. IEEE Trans Automat Control, 2017, 62(10): 5234-5239 [24] Lin Z, Francis B, Maggiore M. State agreement for continuous-time coupled nonlinear systems. SIAM J Control Optim, 2007, 46(1): 288-307 [25] Dong J G. Flocks with nonlinear inherent dynamics under fixed and switching digraphs. SIAM J Appl Dyn Syst, 2024, 23(2): 1242-1271 |