数学物理学报(英文版) ›› 2025, Vol. 45 ›› Issue (5): 1920-1941.doi: 10.1007/s10473-025-0508-9

• • 上一篇    下一篇

NONEXISTENCE AND EXISTENCE OF SUPERSOLUTIONS FOR HIGHER ORDER SEMILINEAR EQUATIONS IN EXTERIOR DOMAINS

Xianmei ZHOU*   

  1. School of Mathematical Sciences and Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, China
  • 收稿日期:2024-04-18 出版日期:2025-09-25 发布日期:2025-10-14

NONEXISTENCE AND EXISTENCE OF SUPERSOLUTIONS FOR HIGHER ORDER SEMILINEAR EQUATIONS IN EXTERIOR DOMAINS

Xianmei ZHOU*   

  1. School of Mathematical Sciences and Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, China
  • Received:2024-04-18 Online:2025-09-25 Published:2025-10-14
  • Contact: *Xianmei Zhou, E-mail: xmzhoumath@163.com

摘要: In this paper, we study the weighted higher order semilinear equation in an exterior domain $$\begin{equation*} (-\Delta)^{m} u=|x|^{\alpha}g(u) \quad \quad \text{in} \ \mathbb{R}^{N}\setminus B_{R_{0}}, \end{equation*}$$ where $N\geq1$, $m\geq2$ are integers, $\alpha>-2m$, $g$ is a continuous and nondecreasing function in $\left[ 0,+\infty\right) $ and positive in $\left( 0,+\infty\right) $, $ B_{R_{0}}$ is the ball of the radius $R_{0}$ centered at the origin. We prove that a positive supersolution of the problem which verifies $ (-\Delta )^{i}u > 0 $ in $\ \mathbb{R}^{N}\setminus B_{R_{0}}$ $(i=0,\cdots, m-1)$ exists if and only if $N>2m$ and $$\begin{equation*} \int_{0}^{\delta}\frac{g(t)}{t^{\frac{2(N-m)+\alpha}{N-2m}}}{\rm d}t<\infty, \end{equation*}$$ for some $\delta>0$. We further obtain some existence and nonexistence results for the positive solution to the Dirichlet problem when $g(u)=u^p$ with $p>1 $, by using the Pohozaev identity and an embedding lemma of radial Sobolev spaces.

关键词: higher order equations, exterior domains, Liouville theorem, existence, supersolutions

Abstract: In this paper, we study the weighted higher order semilinear equation in an exterior domain $$\begin{equation*} (-\Delta)^{m} u=|x|^{\alpha}g(u) \quad \quad \text{in} \ \mathbb{R}^{N}\setminus B_{R_{0}}, \end{equation*}$$ where $N\geq1$, $m\geq2$ are integers, $\alpha>-2m$, $g$ is a continuous and nondecreasing function in $\left[ 0,+\infty\right) $ and positive in $\left( 0,+\infty\right) $, $ B_{R_{0}}$ is the ball of the radius $R_{0}$ centered at the origin. We prove that a positive supersolution of the problem which verifies $ (-\Delta )^{i}u > 0 $ in $\ \mathbb{R}^{N}\setminus B_{R_{0}}$ $(i=0,\cdots, m-1)$ exists if and only if $N>2m$ and $$\begin{equation*} \int_{0}^{\delta}\frac{g(t)}{t^{\frac{2(N-m)+\alpha}{N-2m}}}{\rm d}t<\infty, \end{equation*}$$ for some $\delta>0$. We further obtain some existence and nonexistence results for the positive solution to the Dirichlet problem when $g(u)=u^p$ with $p>1 $, by using the Pohozaev identity and an embedding lemma of radial Sobolev spaces.

Key words: higher order equations, exterior domains, Liouville theorem, existence, supersolutions

中图分类号: 

  • 35B53