[1] Simmons C P, Farrar J J, Nguyen V C, Wills B. Dengue. N Engl J Med, 2012, 366(15): 1423-1432 [2] Kyle J L, Harris E. Global spread and persistence of dengue. Annu Rev Microbiol, 2008, 62(1): 71-92 [3] World Health Organization.Dengue and severe dengue. available on: https://www.who.int/zh/news-room/fact-sheets/detail/dengue-and-severe-dengue [4] Wilder-Smith A. Dengue vaccine development: status and future. Bundesgesundheitsbl, 2020, 63: 40-44 [5] Thomas S J. Is new dengue vaccine efficacy data a relief or cause for concern?. NPJ Vaccines, 2023, 8(1): Art 55 [6] Esteva L, Vargas C. Analysis of a dengue disease transmission model. Math Biosci, 1998, 150(2): 131-151 [7] Burke D S, Nisalak A, Johnson D E. A prospective study of dengue infections in Bangkok. Am J Trop Med Hyg, 1988, 38: 172-180 [8] Endy T P, Chunsuttiwat S, Nisalak A, et al. Epidemiology of inapparent and symptomatic acute dengue virus infection: a prospective study of primary school children in Kamphaeng Phet, Thailand. Am J Epidemiol, 2002, 156(1): 40-51 [9] Baaten G G G, Sonder G J B, Zaaijer H L, et al. Travel-related dengue virus infections, the Netherlands, 2006-2007. Emerging Infect Dis, 2011, 17(5): 821-827 [10] Duong V, Lambrechts L, Paul R E, et al. Asymptomatic humans transmit dengue virus to mosquitoes. Proc Natl Acad Sci, 2015, 112(47): 14688-14693 [11] Ten Bosch Q A, Clapham H E, Lambrechts L, et al. Contributions from the silent majority dominate dengue virus transmission. PLoS Pathog, 2018, 14(4): e1006965 [12] Grunnill M. An exploration of the role of asymptomatic infections in the epidemiology of dengue viruses through susceptible, asymptomatic, infected and recovered (SAIR) models. J Theor Biol, 2018, 439: 195-204 [13] Jan R, Khan M A, Gómez-Aguilar J F. Asymptomatic carriers in transmission dynamics of dengue with control interventions. Optim Contr Appl Met, 2020, 41: 430-447 [14] Rigau-Perez J G, Gubler D J, Vorndam, Clark G G. Dengue: a literature review and case study of travelers from the United States, 1986-1994. J Travel Med, 1997, 4(2): 65-71 [15] Adams B, Kapan D D. Man bites mosquito: understanding the contribution of human movement to vector-borne disease dynamics. PLoS One, 2009, 4(8): e6763 [16] Guzman M G, Halstead S B, Artsob H, et al. Dengue: a continuing global threat. Nat Rev Microbiol, 2010, 8: 7-16 [17] Getis A, Morrison A C, Gray K, et al. Characteristics of the spatial pattern of the dengue vector, Aedes aegypti, in Iquitos, Peru. Am J Trop Med Hyg, 2003, 69: 494-505 [18] Thai K T D, Anders K L. The role of climate variability and change in the transmission dynamics and geographic distribution of dengue. Exp Biol Med, 2011, 263: 944-54 [19] Liang X, Zhao X Q. Asymptotic speeds of spread and traveling waves for monotone semiflows with application. Commun Pur Appl Math, 2007, 60: 1-40 [20] Li T, Li Y, Hethcote H W. Periodic traveling waves in SIRS model. Math Comp Model Dyn, 2009, 49: 393-401 [21] Wu C C. Existence of traveling waves with the critical speed for a discrete diffusive epidemic model. J Differ Equ, 2017, 262: 272-282 [22] Wang Z C, Wu J, Liu R, Traveling waves of the spread of avian influenza. Proc Am Math Soc, 2012, 140: 3931-3946 [23] Li Y, Li W T, Lin G. Traveling waves of a delayed diffusive SIR epidemic model. Commun Pure Appl Anal, 2015, 14: 1001-1022 [24] Wang K, Zhao H Y, Wang H, et al. Traveling wave of a reaction-diffusion vector-borne disease model with nonlocal effects and distributed delay. J Dyn Differ Equ, 2021, 35: 3149-3185 [25] Zhao L, Wang Z C, Ruan S.Traveling wave solutions in a two-group SIR epidemic model with constant recruitment. J Math Biol, 2018, 77: 1871-1915 [26] Zhao L, Wang Z C, Ruan S. Traveling wave solutions in a two-group epidemic model with latent period. Nonlinearity, 2017, 30: 1287-1325 [27] Denu D, Ngoma S, Salako R B. Existence of traveling wave solutions of a deterministic vector-host epidemic model with direct transmission. J Math Anal Appl, 2020, 487: Art 123995 [28] Wang K, Zhao H, Wang H. Traveling waves for a diffusive mosquito-borne epidemic model with general incidence. Z Angew Math Phys, 2022, 73: Art 31 [29] Zhao L. Spreading speed and traveling wave solutions of a reaction-diffusion Zika model with constant recruitment. Nonlinear Anal: RWA, 2023, 74: Art 103942 [30] Gazori F, Hesaaraki M. Minimum wave speed for dengue prevalence in the symptomatic and asymptomatic infected individuals. Comput Appl Math, 2023, 42: 1-23 [31] Yang Z, Zhang B G. Global stability of traveling wavefronts for nonlocal reaction-diffusion equations with time delay. Acta Math Sci, 2018, 38: 289-302 [32] Driessche P, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci, 2002, 180: 29-48 [33] Ma S. Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem. J Differ Equ, 2001, 171: 294-314 [34] Gilbarg G, Trudinger N.Elliptic Partial Differential Equations of Second Order. Berlin: Springer, 2001 [35] Friedman A.Partial Differential Equations of Parabolic Type. Courier Dover Publications, 2008 [36] Lam K Y, Lou Y. Asymptotic behavior of the principal eigenvalue for cooperative elliptic systems and applications. J Dyn Differ Equ, 2016, 28: 29-48 |