|   [1]  Ahlfors L V, Lounesto P. Some remarks on Clifford algebra. Complex Variables, 1989, 12: 201--209 
[2]  Ahlfors L V. Möbius transformations and Clifford numbers//Differential Geometry and Complex Analysis, H. E. Rauch Memorial Volume. New York: Springer-Verlag, 1985 
 
[3]  Ahlfors L V.  On the fixed points of Möbius transformations in Rn. Ann Acad Sci Fen Ser A I Math, 1985, 10: 15--27 
 
[4]  Beardon A F. Continued fractions, discrete groups and complex dynamics. Comput Methods and Function Theory, 2001, 1: 535--594 
[5]  Beardon A F. Continued fractions, Möbius transformations and Cliffod algebras. Bull London Math Soc, 2003, 35: 302--308 
[6]  Beardon A F. Hillam-Thron theorem in higher dimensions. Geom Dedicata, 2003, 96: 205--209 
 
[7]  Jones W B, Thron W J. Continued Fractions: Analytic Theory and Applications, Encyclopedia of Mathematics and its Applications. Mass: Addison-Wesley Publishing Co, 1980 
 
[8]  Mustapha Raissouli, Ali Kacha. Convergence of matrix continued fractions. Linear Algebra Appl, 2000, 320: 115--129 
[9]  Li Y, Chen J. Value regions and element regions of Clifford continued fractions. J Natural Science of Heilongjiang University, 2008, 25: 178--182 
[10]  Li Y. Three term recurrence relation and Pincherle theroem for Clifford continued fractions. Adv in Math (China), 2008, 37:  15--24 
[11]  Lorentzen L, Waadeland H. Continued Fractions with Applications, Studies in Computational Mathematics 3. Amsterdam: North-Holland Publishing Co, 1992 
[12]  Wang X, Yang  W. Discreteness criteria of M\"obius groups of high dimensions and convergence theorem of Kleinian groups. Adv in Math, 2001, 159: 68--82 
[13]  Zhao H, Zhu G. A Worpitzky theorem for vector valued continued fractions. J Comput Appl Math, 2003, 154: 107--114 
[14]  Zhao H, Zhu G. Matrix-valued continued fractions. J Approx Theory, 2003, 120: 136--152  |