[1] Ambrosio L, Gigli N, Savaré G. Gradient Flows: In Metric Spaces and in the Space of Probability Measures. Basel: Birkhäuser Basel, 2008 [2] Bercovici H, Brown A, Pearcy C.Measure and Integration. Cham: Springer, 2016 [3] Bresch D, Jabin P E, Soler J. A new approach to the mean-field limit of Vlasov-Fokker-Planck equations. Anal PDE, 2025, 18(4): 1037-1064 [4] Bresch D, Jabin P E, Wang Z. Mean field limit and quantitative estimates with singular attractive kernels. Duke Math J, 2023, 172(13): 2591-2641 [5] Bresch D, Jabin P E, Wang Z. On mean-field limits and quantitative estimates with a large class of singular kernels: application to the Patlak-Keller-Segel model. C R Math, 2019, 357(9): 708-720 [6] Canizo J A, Carrillo J A, Rosado J. A well-posedness theory in measures for some kinetic models of collective motion. Math Models Methods Appl Sci, 2011, 21(3): 515-539 [7] Carrillo J A, Choi Y P. Mean-field limits: from particle descriptions to macroscopic equations. Arch Ration Mech Anal, 2021, 241(3): 1529-1573 [8] Carrillo J A, Choi Y P, Hauray M, et al. Mean-field limit for collective behavior models with sharp sensitivity regions. J Eur Math Soc, 2018, 21(1): 121-161 [9] Carrillo J A, D'Orsogna M R, Panferov V. Double milling in self-propelled swarms from kinetic theory. Kinetic Relat Models, 2009, 2(2): 363-378 [10] Carrillo J A, Fornasier M, Rosado J, et al. Asymptotic flocking dynamics for the kinetic Cucker-Smale model. SIAM J Math Anal, 2010, 42(1): 218-236 [11] Carrillo J A, Fornasier M, Toscani G, et al.Particle, kinetic, and hydrodynamic models of swarming//Naldi G, Pareschi L, Toscani G. Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences. Boston, MA: Birkhäuser Boston, 2010 [12] Chaintron L P, Diez A. Propagation of chaos: a review of models, methods and applications. I. Models and methods. arXiv preprint arXiv:2203.00446, 2022 [13] Chaintron L P, Diez A.Propagation of chaos: a review of models, methods and applications. II. Applications. arXiv preprint arXiv: 2106.14812, 2021 [14] Couzin I D, Krause J, Franks N R, et al. Effective leadership and decision-making in animal groups on the move. Nature, 2005, 433(7025): 513-516 [15] Cucker F, Mordecki E. Flocking in noisy environments. J Math Pures Appl, 2008, 89(3): 278-296 [16] Cucker F, Smale S. Emergent behavior in flocks. IEEE Trans Autom Control, 2007, 52(5): 852-862 [17] Danskin J M.The Theory of Max Min. Berlin: Springer, 1967 [18] Dobrushin R L. Vlasov equations. Funct Anal Appl, 1979, 13(2): 48-58 [19] D'Orsogna M R, Chuang Y L, Bertozzi A L, et al. Self-propelled particles with soft-core interactions: patterns, stability,collapse. Phys Rev Lett, 2006, 96(10): Art 104302 [20] Figalli A, Glaudo F.An Invitation to Optimal Transport, Wasserstein Distances, and Gradient Flows. European Mathematical Society, 2021 [21] Golse F. Mean-field limits in statistical dynamics. arXiv preprint arXiv:2201.02005, 2022 [22] Golse F.On the dynamics of large particle systems in the mean field limit//Muntean A, Rademacher J D M, Zagaris A. Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity. Cham: Springer, 2016 [23] Golse F, Mouhot C, Paul T. On the mean field and classical limits of quantum mechanics. Commun Math Phys, 2016, 343(1): 165-205 [24] Golse F, Mouhot C, Ricci V. Empirical measures and Vlasov hierarchies. Kinetic Relat Models, 2013, 6(4): 919-943 [25] Guillin A, Le Bris P, Monmarché P. Uniform in time propagation of chaos for the 2D vortex model and other singular stochastic systems. J Eur Math Soc, 2024, 27(6): 2359-2386 [26] Ha S Y, Kim J, Zhang X. Uniform stability of the Cucker-Smale model and its application to the mean-field limit. Kinetic Relat Models, 2018, 11(5): 1157-1181 [27] Ha S Y, Liu J G. A simple proof of the Cucker-Smale flocking dynamics and mean-field limit. Commun Math Sci, 2009, 7(2): 297-325 [28] Ha S Y, Tadmor E. From particle to kinetic and hydrodynamic descriptions of flocking. Kinetic Relat Models, 2008, 1(3): 415-435 [29] Han Y. Entropic propagation of chaos for mean field diffusion with $ L^{p} $ interactions via hierarchy, linear growth and fractional noise. arXiv preprint arXiv:2205.02772, 2022 [30] Haskovec J. Flocking dynamics and mean-field limit in the Cucker-Smale-type model with topological interactions. Physica D, 2013, 261: 42-51 [31] Hauray M, Mischler S. On Kac's chaos and related problems. J Funct Anal, 2014, 266(10): 6055-6157 [32] Jabin P E. A review of the mean field limits for Vlasov equations. Kinetic Relat Models, 2014, 7(4): 661-711 [33] Jabin P E, Wang Z. Mean field limit and propagation of chaos for Vlasov systems with bounded forces. J Funct Anal, 2016, 271(12): 3588-3627 [34] Jabin P E, Wang Z. Quantitative estimates of propagation of chaos for stochastic systems with $W^{-1,\infty}$ kernels. Invent Math, 2018, 214(1): 523-591 [35] Jadbabaie A, Lin J, Morse A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control, 2003, 48(6): 988-1001 [36] Kac M.Foundations of kinetic theory//Neyman J. Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Volume III. Berkeley: University of California Press, 2023 [37] Lacker D. Hierarchies, entropy,quantitative propagation of chaos for mean field diffusions. Probab Math Phys, 2023, 4(2): 377-432 [38] Lacker D, Le Flem L. Sharp uniform-in-time propagation of chaos. Probab Theory Relat Fields, 2023, 187(1/2): 1-38 [39] Levine H, Rappel W J, Cohen I. Self-organization in systems of self-propelled particles. Phys Rev E, 2000, 63(1): Art 017101 [40] Li X, Liu Y, Wu J. Flocking and pattern motion in a modified cucker-smale model. Bull Korean Math Soc, 2016, 53(5): 1327-1339 [41] Liu Y, Passino K M. Stable social foraging swarms in a noisy environment. IEEE Trans Autom Control, 2004, 49(1): 30-44 [42] McKean H P. Propagation of chaos for a class of non-linear parabolic equations. Stochastic Differential Equations, 1967: 41-57 [43] Motsch S, Tadmor E. A new model for self-organized dynamics and its flocking behavior. J Stat Phys, 2011, 144: 923-947 [44] Mucha P B, Peszek J. The Cucker-Smale equation: singular communication weight, measure-valued solutions and weak-atomic uniqueness. Arch Ration Mech Anal, 2018, 227(1): 273-308 [45] Natalini, R, Paul T. On the mean field limit for Cucker-Smale models. Discrete Contin Dyn Syst Ser B, 2022, 27(5): 2873-2889 [46] Nguyen V, Shvydkoy R. Propagation of chaos for the Cucker-Smale systems under heavy tail communication. Commun Partial Differ Equ, 2022, 47(9): 1883-1906 [47] Piccoli B, Rossi F. Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes. Acta Appl Math, 2013, 124(1): 73-105 [48] Piccoli B, Rossi F, Trélat E. Control to flocking of the kinetic Cucker--Smale model. SIAM J Math Anal, 2015, 47(6): 4685-4719 [49] Spohn H.Large Scale Dynamics of Interacting Particles. Berlin: Springer-Verlag, 1991 [50] Sznitman A S. Topics in propagation of chaos. Ecole d'été de probabilités de Saint-Flour XIX-1989, 1991, 1464: 165-251 [51] Villani C.Optimal Transport: Old and New. Berlin: Springer, 2009 [52] Villani C.Topics in Optimal Transportation. Providence, RI: American Mathematical Society, 2021 [53] Wu J, Wang X, Liu Y. Asymptotic analysis of the linear formation model with an undirected connected topology. Math Comput Simul, 2024, 225: 1039-1055 |