[1] Abels H. On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities. Arch Ration Mech Anal, 2009, 194(2): 463-506 [2] Bourguignon J, Brezis H. Remarks on the Euler equation. J Funct Anal, 1974, 15: 341-363 [3] Beir$ {\rm \tilde{a} }$o da Veiga H, Crispo F. Sharp inviscid limit results under Navier type boundary conditions. An $L^p$ theory, J Math Fluid Mech, 2010, 12(3): 397-411 [4] Brezis H, Mironescu P. Gagliardo-Nirenberg inequalities and non-inequalities: The full story. Ann Inst H Poincar${\acute{\rm e} }$ C Anal Non Lin$\acute{\rm e}$aire, 2018, 35(5): 1355-1376 [5] Beir$ {\rm \tilde{a} }$o da Veiga H, Yang J. Regularity criteria for Navier-Stokes equations with slip boundary conditions on non-flat boundaries via two velocity components. Adv Nonlinear Anal, 2020, 9(1): 633-643 [6] Cherfils L, Feireisl E, Mich${\rm\acute{a}}$lek M, et al. The compressible Navier-Stokes-Cahn-Hilliard equations with dynamic boundary conditions. Math Models Methods Appl Sci, 2019, 29(14): 2557-2584 [7] Chen Y, He Q, Huang B, Shi X. Navier-Stokes/Allen-Cahn system with generalized Navier boundary condition. Acta Math Appl Sin Engl Ser, 2022, 38(1): 98-115 [8] Clopeau T, Mikeli${\rm \acute{c}}$ A, Robert R. On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions. Nonlinearity, 1998, 11: 1625-1636 [9] Cherfils L, Petcu M. On the viscous Cahn-Hilliard-Navier-Stokes equations with dynamic boundary conditions. Commun Pure Appl Anal, 2016, 15(4): 1419-1449 [10] Chen X, Wang X, Xu X. Analysis of the Cahn-Hilliard equation with a relaxation boundary condition modeling the contact angle dynamics. Arch Ration Mech Anal, 2014, 213(1): 1-24 [11] Dussan V E B, Davis S H. On the motion of a fluid-fluid interface along a solid surface. J Fluid Mech, 1974, 65: 71-95 [12] Ding S, Li Y, lin Z, Yan Y. Navier-Stokes/Cahn-Hilliard equations with generalized Navier boundary condition and relaxation boundary condition. arXiv:2312.17520v2 [13] Di Nezza E, Palatucci G, Valdinoci E. Hitchhiker's guide to the fractional Sobolev spaces. Bull Sci Math, 2012, 136: 521-573 [14] Flandoli F. Dissipativity and invariant measures for stochastic Navier-Stokes equations. NoDEA Nonlinear Differ Equ Appl, 1994, 1: 403-423 [15] Foias C, Temam R. Remarques sur les equations de Navier-Stokes stationaires et les phenomenes successifs de bifurcation. Ann Sc Norm Syper Pis, 1978, 5: 29-63 [16] Gal C G. The role of surface diffusion in dynamic boundary conditions: Where do we stand?. Milan J Math, 2015, 83(2): 237-278 [17] Gal C G, Grasselli M. Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D. Ann Inst H Poincar${\acute{\rm e} }$ C Anal Non Lin$\acute{e}$aire, 2010, 27(1): 401-436 [18] Gal C G, Grasselli M, Poiatti A. Allen-Cahn-Navier-Stokes-Voigt systems with moving contact lines. J Math Fluid Mech, 2023, 25(4): Art 89 [19] Gal C G, Grasselli M, Miranville A. Cahn-Hilliard-Navier-Stokes systems with moving contact lines. Calc Var Partial Differential Equations, 2016, 55(3): Art 50 [20] Gal C G, Grasselli M, Wu H. Global weak solutions to a diffuse interface model for incompressible two-phase flows with moving contact lines and different densities. Arch Rational Mech Anal, 2019, 234(1): 1-56 [21] Giorgini A, Miranville A, Temam R. Uniqueness and regularity for the Navier-Stokes-Cahn-Hilliard system. SIAM J Math Anal, 2019, 51(3): 2535-2574 [22] Guo Y, Tice I. Almost exponential decay of periodic viscous surface waves without surface tension. Arch Ration Mech Anal, 2013, 207(2): 459-531 [23] Hohenberg P C, Halperin B I. Theory of dynamic critical phenomena. Rev Mod Phys, 1977, 49: 435-479 [24] James P. Kelliher, Navier-Stokes equations with Navier boundary conditions for a bounded domain in the plane. SIAM J Math Anal, 2006, 38(1): 210-232 [25] Kobayashi T, Zajaczkowski W M. On global motion of a compressible barotropic viscous fuid with boundary slip condition. Appl Math, 1994, 26(2): 159-194 [26] Li Q, Ding S. Global well-posedness of the Navier-Stokes equations with Navier-slip boundary conditions in a strip domain. Commun Pure Appl Anal, 2021, 20(10): 3561-3581 [27] Liu C, Wu H. An energetic variational approach for the Cahn-Hilliard equation with dynamic boundary condition: model derivation and mathematical analysis. Arch Ration Mech Anal, 2019, 233(1): 167-247 [28] Miranville A, Wu H. Long-time behavior of the Cahn-Hilliard equation with dynamic boundary condition. J Elliptic Parabol Equ, 2020, 6(1): 283-309 [29] Miranville A, Zelik S. Exponential attractors for the Cahn-Hilliard equation with dynamic boundary conditions. Math Methods Appl Sci, 2005, 28(6): 709-735 [30] Ne${\rm \check{c}}$as J. Direct Methods in the Theory of Elliptic Equations. Translated from the 1967 French original by Gerard Tronel and Alois Kufner. Editorial coordination and preface by ${\rm \check{s}}$${\rm\acute{a}}$rka Ne${\rm \check{s}}$asov${\rm\acute{a}}$ and a contribution by Christian G. Simader. Springer Monographs in Mathematics. Heidelberg: Springer, 2012 [31] Pr${\rm\ddot{u}}$ss J, Racke R, Zheng S. Maximal regularity and asymptotic behavior of solutions for the Cahn-Hilliard equation with dynamic boundary conditions. Ann Mat Pura Appl, 2006, 185(4): 627-648 [32] Qian T, Wang X, Sheng P. Molecular scale contact line hydrodynamics of immiscible flows. Phys Rev E, 2003, 68: 016306 [33] Qian T, Wang X, Sheng P. Generalized Navier boundary condition for the moving contact line. Commun Math Sci, 2003, 1(2): 333-341 [34] Qian T, Wang X, Sheng P. Power-law slip profile of the moving contact line in two-phase immiscible flows. Phys Rev lett, 2004, 63: 094501 [35] Qian T, Wang X, Sheng P. A variational approach to moving contact line hydrodynamics. J Fluid Mech, 2006, 564: 333-360 [36] Racke R, Zheng S. The Cahn-Hilliard equation with dynamic boundary conditions. Adv Differential Equations, 2003, 8(1): 83-110 [37] Solonnikov V A, ${\rm \check{S} \check{a}}$cadilov V E. A certain boundary value problem for the stationary system of Navier-Stokes equations. Boundary Value Problems of Mathematical Physics, 8. Trudy Mat Inst Steklov, 1973, 125: 196-210. Translation in Proc Steklov Inst Math, 1973, 125: 186-199 [38] Wu H. A review on the Cahn-Hilliard equation: Classical results and recent advances in dynamic boundary conditions. Electron Res Arch, 2022, 30(8): 2788-2833 [39] Wu H, Zheng S. Convergence to equilibrium for the Cahn-Hilliard equation with dynamic boundary conditions. J Differential Equations, 2004, 204(2): 511-531 [40] Xu X, Di Y, Yu H. Sharp-interface limits of a phase-field model with a generalized Navier slip boundary condition for moving contact lines. J Fluid Mech, 2018, 849: 805-833 [41] Xiao Y, Xin Z. On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition. Comm Pure Appl Math, 2007, 60(7): 1027-1055 [42] You B. Global attractor of the Cahn-Hilliard-Navier-Stokes system with moving contact lines. Commun Pure Appl Anal, 2019, 18(5): 2283-2298 [43] You B. Trajectory statistical solutions for the Cahn-Hilliard-Navier-Stokes system with moving contact lines. Discrete Contin Dyn Syst Ser B, 2022, 27(9): 4769-4785 [44] Yu H, Yang X. Numerical approximations for a phase-field moving contact line model with variable densities and viscosities. J Comput Phys, 2017, 334: 665-686 [45] Yang X, Yu H. Efficient second order unconditionally stable schemes for a phase field moving contact line model using an invariant energy quadratization approach. SIAM J Sci Comput, 2018, 40(3): B889-B914 [46] Zhu G, Kou J, Yao J, Li A, Sun S. Thermodynamically consistent modelling of two-phase flows with moving contact line and soluble surfactants. J Fluid Mech, 2019, 879: 327-359 |