[1] Li Q, Jiang S, Sun W. A $h^t_n$-based ugks scheme for the three-temperature radiative transfer equations. Communications in Computational Physics, 2025, 38(2): 317-347 [2] Di Matteo T, Blackman E, Fabian A. Two-temperature coronae in active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 1997, 291(1): L23-L27 [3] Fraley G, Linnebur E, Mason R, Morse R. Thermonuclear burn characteristics of compressed deuterium-tritium microspheres. The Physics of Fluids, 1974, 17(2): 474-489 [4] Marinak M M, Kerbel G, Gentile N, et al. Three-dimensional hydra simulations of national ignition facility targets. Physics of Plasmas, 2001, 8(5): 2275-2280 [5] Winslow A M. Multifrequency-gray method for radiation diffusion with compton scattering. Journal of Computational Physics, 1995, 117(2): 262-273 [6] Enaux C, Guisset S, Lasuen C, Ragueneau Q. Numerical resolution of a three temperature plasma model. Journal of Scientific Computing, 2020, 82(3): Art 51 [7] Fleck Jr J A, Cummings Jr J. An implicit monte carlo scheme for calculating time and frequency dependent nonlinear radiation transport. Journal of Computational Physics, 1971, 8(3): 313-342 [8] McClarren R G, Urbatsch T J. A modified implicit monte carlo method for timedependent radiative transfer with adaptive material coupling. Journal of Computational Physics, 2009, 228(16): 5669-5686 [9] Lathrop K D. Remedies for ray effects. Nuclear Science and Engineering, 1971, 45(3): 255-268 [10] Chen S S, Li B W, Sun Y S. Chebyshev collocation spectral method for solving radiative transfer with the modified discrete ordinates formulations. International Journal of Heat and Mass Transfer, 2015, 88: 388-397 [11] McClarren R G, Hauck C D. Robust and accurate filtered spherical harmonics expansions for radiative transfer. Journal of Computational Physics, 2010, 229(16): 5597-5614 [12] Frank M, Dubroca B, Klar A. Partial moment entropy approximation to radiative heat transfer. Journal of Computational Physics, 2006, 218(1): 1-18 [13] Vikas V, Hauck C D, Wang Z J, Fox R O. Radiation transport modeling using extended quadrature method of moments. Journal of Computational Physics, 2013, 246: 221-241 [14] Shin M.Hybrid discrete ($h^t_n$) approximations to the equation of radiative transfer. Ames: Iowa State University, 2019 [15] Li Q, Jiang S, Sun W, Xu X. An asymptotic-preserving hybrid angular discretization for the gray radiative transfer equations. Nuclear Science and Engineering, 2024, 198(5): 993-1020 [16] McClarren R G, Rossmanith J A, Shin M. Semi-implicit hybrid discrete ($h^t_n$) approximation of thermal radiative transfer. Journal of Scientific Computing, 2022, 90(1): 1-29 [17] Sijoy C, Chaturvedi S. TRHD: Three-temperature radiation-hydrodynamics code with an implicit non-equilibrium radiation transport using a cell-centered monotonic finite volume scheme on unstructured-grids. Computer Physics Communications, 2015, 190: 98-119 [18] Sijoy C, Chaturvedi S. Combining node-centered parallel radiation transport and higher-order multi-material cell-centered hydrodynamics methods in three-temperature radiation hydrodynamics code trhd. Computer Physics Communications, 2016, 203: 94-109 [19] Yu Y, Chen X, Yuan G. A finite volume scheme preserving maximum principle for the system of radiation diffusion equations with three-temperature. SIAM Journal on Scientific Computing, 2019, 41(1): B93-B113 [20] Evans T M, Densmore J D. Methods for coupling radiation, ion,electron energies in grey implicit monte carlo. Journal of Computational Physics, 2007, 225(2): 1695-1720 [21] Sun W, Jiang S, Xu K, Li S. An asymptotic preserving unified gas kinetic scheme for frequency-dependent radiative transfer equations. Journal of Computational Physics, 2015, 302: 222-238 [22] Shi Y. A maximum principle preserving implicit monte carlo method for frequencydependent radiative transfer equations. Journal of Computational Physics, 2023, 495: 112552 [23] Enaux C, Guisset S, Lasuen C, Samba G. Numerical methods for coupling multigroup radiation with ion and electron temperatures. Communications in Applied Mathematics and Computational Science, 2022, 17(1): 43-78 [24] Larsen E W, Morel J E, Miller Jr W F. Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes. Journal of Computational Physics, 1987, 69(2): 283-324 [25] Larsen E W, Morel J E, Miller W F. Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes ii. Journal of Computational Physics, 1989, 83(1): 212-236 [26] Jin S, Levermore C D. The discrete-ordinate method in diffusive regimes. Transport Theory and Statistical Physics, 1991, 20(5/6): 413-439 [27] Jin S, Levermore C D. Fully-discrete numerical transfer in diffusive regimes. Transport Theory and Statistical Physics, 1993, 22(6): 739-791 [28] Xu K, Huang J. A unified gas-kinetic scheme for continuum and rarefied ows. Journal of Computational Physics, 2010, 229(20): 7747-7764 [29] Mieussens L. On the asymptotic preserving property of the unified gas kinetic scheme for the diffusion limit of linear kinetic models. Journal of Computational Physics, 2013, 253: 138-156 [30] Sun W, Jiang S, Xu K. An asymptotic preserving unified gas kinetic scheme for gray radiative transfer equations. Journal of Computational Physics, 2015, 285: 265-279 [31] Sun W, Jiang S, Xu K. An implicit unified gas kinetic scheme for radiative transfer with equilibrium and non-equilibrium diffusive limits. Communications in Computational Physics, 2017, 22(4): 889-912 [32] Sun W, Jiang S, Xu K. A multidimensional unified gas-kinetic scheme for radiative transfer equations on unstructured mesh. Journal of Computational Physics, 2017, 351: 455-472 [33] Chandrasekhar S. Radiative Transfer. Dover: Courier Corporation, 2013 [34] Chang B. The incorporation of the semi-implicit linear equations into newtons method to solve radiation transfer equations. Journal of Computational Physics, 2007, 226(1): 852-878 [35] Larsen E. A grey transport acceleration method for time-dependent radiative transfer problems. Journal of Computational Physics, 1988, 78(2): 459-480 [36] Densmore J D, Thompson K G, Urbatsch T J. A hybrid transport-diffusion monte carlo method for frequency-dependent radiative-transfer simulations. Journal of Computational Physics, 2012, 231(20): 6924-6934 [37] Hu Y, Liu C.A unified gas-kinetic particle method for frequency-dependent radiative transfer equations with isotropic scattering process on unstructured mesh. arXiv: 2302.07943 |