Acta mathematica scientia,Series B ›› 2025, Vol. 45 ›› Issue (6): 2447-2477.doi: 10.1007/s10473-025-0606-8
Previous Articles Next Articles
Yifei WU1, Zhibo YANG2, Qi ZHOU3
Received:2025-02-13
Revised:2025-05-31
Online:2025-11-25
Published:2025-11-14
About author:Yifei WU,E-mail: yerfmath@gmail.com; Zhibo YANG, E-mail: yangzhibo@nidd2025.com; Qi ZHOU, E-mail: qizhou@nankai.edu.cn
Supported by:CLC Number:
Yifei WU, Zhibo YANG, Qi ZHOU. WELL-POSEDNESS OF THE DISCRETE NONLINEAR SCHRÖDINGER EQUATIONS AND THE KLEIN-GORDON EQUATIONS[J].Acta mathematica scientia,Series B, 2025, 45(6): 2447-2477.
| [1] Aizenman M, Molchanov S. Localization at large disorder and at extreme energies: an elementary derivation. Comm Math Phys, 1993, 157(2): 245-278 [2] Akrivis G D. Finite difference discretization of the cubic Schrödinger equation. IMA J Numer Anal,1993, 13(1): 115-124 [3] Avila A.The absolutely continuous spectrum of the almost mathieu operator. arXiv: 0810.2965 [4] Avila A. Global theory of one-frequency Schrödinger operators. Acta Math,2015, 215(1): 1-54 [5] Avila A,You J, Zhou Q. Sharp phase transitions for the almost Mathieu operator. Duke Math J, 2017, 166(14): 2697-2718 [6] Bambusi D. Asymptotic stability of breathers in some Hamiltonian networks of weakly coupled oscillators. Comm Math Phys, 2013, 324(2): 515-547 [7] Bambusi D, Zhao Z. Dispersive estimate for quasi-periodic Schrödinger operators on 1-$d$ lattices. Adv Math,2020, 366: 107071 [8] Bao W, Cai Y. Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation. Math Comp, 2013, 82(281): 99-128 [9] Bernier J.Bounds on the growth of high discrete sobolev norms for the cubic discrete nonlinear Schrödinger equations on $h\mathbb{Z}$. arXiv: 1805.02468 [10] Bernier J, Faou E. Existence and stability of traveling waves for discrete nonlinear Schrödinger equations over long times. SIAM J Math Anal,2019, 51(3): 1607-1656 [11] Bourgain J, Wang W M. Quasi-periodic solutions of nonlinear random Schrödinger equations. J Eur Math Soc (JEMS), 2008, 10(1): 1-45 [12] Cazenave T, Weissler F B. The Cauchy problem for the nonlinear Schrödinger equation in $H^1$. Manuscripta Math,1988, 61(4): 477-494 [13] Christ M, Colliander J, Tao T.Ill-posedness for nonlinear Schrödinger and wave equations. arXiv: math/0311048 [14] Cuccagna S, Tarulli M. On asymptotic stability of standing waves of discrete Schrödinger equation in $\Bbb Z$. SIAM J Math Anal,2009, 41(3): 861-885 [15] Cuenin J, Ikromov I A. Sharp time decay estimates for the discrete Klein-Gordon equation. Nonlinearity, 2021, 34(11): 7938-7962 [16] Stefanov A, Pelinovsky D. On the spectral theory and dispersive estimates for a discrete Schrödinger equation in one dimension. Journal of Mathematical Physics,2008, 49(11): 113501 [17] Dodson B, Soffer A, Spencer T. The nonlinear Schrödinger equation on Z and R with bounded initial data: examples and conjectures. J Stat Phys,2020, 180(1-6): 910-934 [18] Dreifus H V, Klein A. A new proof of localization in the Anderson tight binding model. Comm Math Phys, 1989, 124(2): 285-299 [19] Du D, Wu Y, Zhang K. On blow-up criterion for the nonlinear Schrödinger equation. Discrete Contin Dyn Syst,2016, 36(7): 3639-3650 [20] Efremidis N K, Sears S, Christodoulides D N, et al. Discrete solitons in photorefractive optically induced photonic lattices. Physical Review E Statistical Nonlinear Soft Matter Physics, 2002, 66(4): 137-138 [21] Egorova I, Kopylova E, Teschl G. Dispersion estimates for one-dimensional discrete Schrödinger and wave equations. J Spectr Theory,2015, 5(4): 663-696 [22] Eisenberg H S, Morandotti R, Silberberg Y, et al. Optical discrete solitons in waveguide arrays. i. soliton formation. Journal of the Optical Society of America B, 2002, 19(12): 2938-2944 [23] Fröhlich J, Spencer T. Absence of diffusion in the Anderson tight binding model for large disorder or low energy. Comm Math Phys,1983, 88(2): 151-184 [24] Geng J, You J, Zhao Z. Localization in one-dimensional quasi-periodic nonlinear systems. Geom Funct Anal, 2014, 24(1): 116-158 [25] Ginibre J, Velo G. The global Cauchy problem for the nonlinear Klein-Gordon equation. Math Z, 1985, 189(4): 487-505 [26] Ginibre J, Velo G. The global Cauchy problem for the nonlinear Klein-Gordon equation. II. Ann Inst H Poincaré Anal Non Linéaire,1989, 6(1): 15-35 [27] Ginibre J, Velo G. Smoothing properties and retarded estimates for some dispersive evolution equations. Comm Math Phys, 1992, 144(1): 163-188 [28] Glassey R T. On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations. J Math Phys,1977, 18(9): 1794-1797 [29] Hong Y, Yang C. Strong convergence for discrete nonlinear Schrödinger equations in the continuum limit. SIAM J Math Anal,2019, 51(2): 1297-1320 [30] Hörmander L. Estimates for translation invariant operators in $L^{p}$ spaces. Acta Math,1960, 104: 93-140 [31] Jenkinson M, Weinstein M I. Onsite and offsite bound states of the discrete nonlinear Schrödinger equation and the Peierls-Nabarro barrier. Nonlinearity,2016, 29(1): 27-86 [32] Jitomirskaya S. Metal-insulator transition for the almost Mathieu operator. Ann of Math (2), 1999, 150(3): 1159-1175 [33] Jitomirskaya S, Liu W. Universal hierarchical structure of quasiperiodic eigenfunctions. Ann of Math (2), 2018, 187(3): 721-776 [34] Journé J L, Soffer A, Sogge C D. Decay estimates for Schrödinger operators. Comm Pure Appl Math,1991, 44(5): 573-604 [35] Keel M, Tao T. Endpoint Strichartz estimates. Amer J Math, 1998, 120(5): 955-980 [36] Kevrekidis P G, Pelinovsky D E, Stefanov A. Asymptotic stability of small bound states in the discrete nonlinear Schrödinger equation. SIAM J Math Anal,2009, 41(5): 2010-2030 [37] Kirkpatrick K, Lenzmann E, Staffilani G. On the continuum limit for discrete NLS with long-range lattice interactions. Comm Math Phys, 2013, 317(3): 563-591 [38] Komech A I, Kopylova E A, Kunze M. Dispersive estimates for 1D discrete Schrödinger and Klein-Gordon equations. Appl Anal,2006, 85(12): 1487-1508 [39] Ignat L I, Zuazua E. Dispersive properties of a viscous numerical scheme for the Schrödinger equation. C R Math Acad Sci Paris,2005, 340(7): 529-534 [40] Ignat L I, Zuazua E. A two-grid approximation scheme for nonlinear Schrödinger equations: dispersive properties and convergence. C R Math Acad Sci Paris,2005, 341(6): 381-386 [41] Ignat L I, Zuazua E. Convergence rates for dispersive approximation schemes to nonlinear Schrödinger equations. J Math Pures Appl,2012, 98(5): 479-517 [42] Ignat L I, Zuazua E. Numerical dispersive schemes for the nonlinear Schrödinger equation. SIAM J Numer Anal,2009, 47(2): 1366-1390 [43] Lei Z, Wu Y.Non-relativistic limit for the cubic nonlinear Klein-gordon equations. arXiv: 2309.10235 [44] Liu W, Wang W M.Nonlinear anderson localized states at arbitrary disorder. arXiv: 2201.00173 [45] Nakanishi K.Scattering theory for the nonlinear Klein-Gordon equation with Sobolev critical power. Internat Math Res Notices, 1999 (1): 31-60 [46] Nakanishi K, Schlag W.Invariant Manifolds and Dispersive Hamiltonian Evolution Equations. Zürich: Euro Math Soc, 2011 [47] N'Guérékata G M, Pankov A. Global well-posedness for discrete non-linear Schrödinger equation. Appl Anal,2010, 89(9): 1513-1521 [48] Pacciani P, Konotop V, Perla Menzala G. On localized solutions of discrete nonlinear Schrödinger equation. An exact result. Phys D,2005, 204(1/2): 122-133 [49] Pankov A. Gap solitons in periodic discrete nonlinear Schrödinger equations. Nonlinearity,2006, 19(1): 27-40 [50] Pankov A, Rothos V. Periodic and decaying solutions in discrete nonlinear Schrödinger with saturable nonlinearity. Proc R Soc Lond Ser A Math Phys Eng Sci,2008, 464(2100): 3219-3236 [51] Payne L E, Sattinger D H. Saddle points and instability of nonlinear hyperbolic equations. Israel Journal of Mathematics, 1975, 22(3): 273-303 [52] Peyrard M, Bishop A R. Statistical mechanics of a nonlinear model for DNA denaturation. Phys Rev Lett, 1989, 62: 2755-2758 [53] Shi Y, Wang W M.Anderson localized states for the quasi-periodic nonlinear wave equation on $\mathbb{Z}^d$. arXiv: 2306.00513 [54] Simon B.Schrödinger operators in the twenty-first century//Fokas A, Grigoryan A, Kibble T, Zegarlinski B. Mathematical Physics 2000. London: Imp Coll Press, 2000: 283-288 [55] Jacques C H Simon, Taflin E. The Cauchy problem for nonlinear Klein-Gordon equations. Comm Math Phys, 1993, 152(3): 433-478 [56] Stefanov A, Kevrekidis P G. Asymptotic behaviour of small solutions for the discrete nonlinear Schrödinger and Klein-Gordon equations. Nonlinearity,2005, 18(4): 1841-1857 [57] Stefanov A G, Ross R M, Kevrekidis P G. Ground states in spatially discrete non-linear Schrödinger models. Nonlinearity,2023, 36: 4053-4085 [58] Strichartz R S. Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math J, 1977, 44(3): 705-714 [59] Sukhorukov A, Kivshar Y, Eisenberg H S, Silberberg Y. Spatial optical solitons in waveguide arrays. Quantum Electronics, IEEE Journal of, 2003, 39(2): 31-50 [60] Taha T R, Ablowitz M J. Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation. J Comput Phys,1984, 55(2): 203-230 [61] Cazenave T.Semilinear Schrödinger Equations. Providence, RI: American Mathematical Society, 2003 [62] Ustinov A V, Cirillo M, Malomed B A. Fluxon dynamics in one-dimensional josephson-junction arrays. Physical Review B Condensed Matter, 1993, 47(13): 8357 [63] Wang W M, Zhang Z. Long time Anderson localization for the nonlinear random Schrödinger equation. J Stat Phys,2009, 134(5/6): 953-968 [64] Wang Y, Xia X, You J, Zheng Z, Zhou Q. Exact mobility edges for 1D quasiperiodic models. Comm Math Phys, 2023, 401(3): 2521-2567 [65] Weinstein M I. Excitation thresholds for nonlinear localized modes on lattices. Nonlinearity, 1999, 12(3): 673-691 |
| [1] | Zhong TAN, Yiying WANG. THE GLOBAL SOLUTION AND BLOWUP OF A EQUATION MODELED FROM THE WATER WAVE PROBLEM WITH CRITICAL GROWTH [J]. Acta mathematica scientia,Series B, 2025, 45(6): 2510-2535. |
| [2] | Dezai MIN, Qingkai WANG, Gang WU, Zhuoya YAO. GLOBAL WELL-POSEDNESS OF 3D INCOMPRESSIBLE HYPER-DISSIPATIVE HALL-MHD EQUATIONS IN ANISOTROPIC BESOV SPACES [J]. Acta mathematica scientia,Series B, 2025, 45(5): 1723-1751. |
| [3] | Huifang JIA, Chunjiang ZHENG. MULTIPLE NORMALIZED SOLUTIONS FOR FRACTIONAL SCHRÖDINGER EQUATIONS WITH COMPETING POWER NONLINEARITY [J]. Acta mathematica scientia,Series B, 2025, 45(5): 1961-1980. |
| [4] | Jing GUO, Zhenxin LIU. POLYNOMIAL MIXING FOR A WEAKLY DAMPED STOCHASTIC NONLINEAR SCHRÖDINGER EQUATION [J]. Acta mathematica scientia,Series B, 2025, 45(5): 2029-2059. |
| [5] | Qixiang YANG, Haibo YANG, Chitin HON, Tao QIAN. $L^P$ BOUNDEDNESS OF COMMUTATOR AND HÖRMANDER CONDITION [J]. Acta mathematica scientia,Series B, 2025, 45(5): 2171-2189. |
| [6] | Biran ZHANG. THE FREE INTERFACE PROBLEM OF PLASMA-VACUUM WITH SURFACE TENSION IN A TUBE DOMAIN [J]. Acta mathematica scientia,Series B, 2025, 45(4): 1307-1342. |
| [7] | Siyan GUO, Jiangbo HAN, Runzhang XU. WELL-POSEDNESS OF 2-D HYPERBOLIC VISCOUS CAHN-HILLIARD EQUATION [J]. Acta mathematica scientia,Series B, 2025, 45(4): 1438-1470. |
| [8] | Zhigang WU, Fuyi XU. STRONG SOLUTION FOR BIPOLAR COMPRESSIBLE NAVIER-STOKES-POISSON SYSTEM WITH UNEQUAL VISCOSITIES IN $L^P$-FRAMEWORK [J]. Acta mathematica scientia,Series B, 2025, 45(3): 1019-1044. |
| [9] | Jiecheng CHEN, Shaolei RU, Chenjing WU. STRICHARTZ AND SMOOTHING ESTIMATES FOR DISPERSIVE SEMI-GROUP ${\rm e}^{-{\rm i} t P(D)}$ IN WEIGHTED ${ L}^{2}$ SPACES AND THEIR APPLICATIONS [J]. Acta mathematica scientia,Series B, 2025, 45(2): 401-415. |
| [10] | Zefu Feng, Jing Jia. THE GLOBAL WELL-POSEDNESS OF SOLUTIONS TO COMPRESSIBLE ISENTROPIC TWO-FLUID MAGNETOHYDRODYNAMICS IN A STRIP DOMAIN* [J]. Acta mathematica scientia,Series B, 2024, 44(5): 1997-2018. |
| [11] | Bin Han, Ningan Lai, Andrei Tarfulea. THE GLOBAL EXISTENCE OF STRONG SOLUTIONS FOR A NON-ISOTHERMAL IDEAL GAS SYSTEM [J]. Acta mathematica scientia,Series B, 2024, 44(3): 865-886. |
| [12] | Cuntao xiao, Hua qiu, Zheng-an yao. THE GLOBAL EXISTENCE AND ANALYTICITY OF A MILD SOLUTION TO THE 3D REGULARIZED MHD EQUATIONS [J]. Acta mathematica scientia,Series B, 2024, 44(3): 973-983. |
| [13] | Mingjuan Chen, Shuai Zhang. ALMOST SURE GLOBAL WELL-POSEDNESS FOR THE FOURTH-ORDER NONLINEAR SCHRÖDINGER EQUATION WITH LARGE INITIAL DATA* [J]. Acta mathematica scientia,Series B, 2023, 43(5): 2215-2233. |
| [14] | Shangquan BU, Gang CAI. THE WELL-POSEDNESS OF FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS IN COMPLEX BANACH SPACES∗ [J]. Acta mathematica scientia,Series B, 2023, 43(4): 1603-1617. |
| [15] | Yansheng ZHONG, Yongqing LI. MULTIPLE POSITIVE SOLUTIONS TO A CLASS OF MODIFIED NONLINEAR SCHRÖDINGER EQUATION IN A HIGH DIMENSION∗ [J]. Acta mathematica scientia,Series B, 2023, 43(4): 1819-1840. |
|
||