[1] Ambrosetti A, Malchiodi A.Nonlinear Analysis and Semilinear Elliptic Problems. Cambridge: Cambridge University Press, 2007 [2] Barrios B, Colorado E, de Pablo A, Sánchez U. On some critical problems for the fractional Laplacian operator. J Differential Equations,2012, 252(11): 6133-6162 [3] Brändle C, Colorado E, de Pablo A, Sánchez U. A concave-convex elliptic problem involving the fractional Laplacian. Proc Roy Soc Edinburgh Sect A,2013, 143(1): 39-71 [4] Brézis H, Lieb E. A relation between pointwise convergence of functions and convergence of functionals. Proc Amer Math Soc,1983, 88(3): 486-490 [5] Cabré X, Tan J G. Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv Math,2010, 224(5): 2052-2093 [6] Caffarelli L, Silvestre L. An extension problem related to the fractional Laplacian. Comm Partial Differential Equations, 2007, 32(7-9): 1245-1260 [7] Capella A, Dávila J, Dupaigne L, Sire Y. Regularity of radial extremal solutions for some non-local semilinear equations. Comm Partial Differential Equations,2011, 36(8): 1353-1384 [8] Chen W X, Li Y, Ma P. The Fractional Laplacian.Hackensack, NJ: World Scientiffc Publishing, 2020 [9] Chen W X, Qi S J. Direct methods on fractional equations. Discrete Contin. Dyn Syst, 2019, 39(3): 1269-1310 [10] Chen W X, Zhu J Y. Indeffnite fractional elliptic problem and Liouville theorems. J Differential Equations, 2016, 260(5): 4758-4785 [11] Llave R, Valdinoci E. Symmetry for a Dirichlet-Neumann problem arising in water waves. Math Res Lett, 2009, 16(5): 909-918 [12] Di Nezza E, Palatucci G, Valdinoci E. Hitchhiker's guide to the fractional Sobolev spaces. Bull Sci Math, 2012, 136(5): 521-573 [13] Dipierro S, Miraglio P, Valdinoci E.Symmetry results for the solutions of a partial differential equation arising in water waves//2018 MATRIX Annals. Cham: Springer, 2020: 229-248 [14] Du S Z. On partial regularity of the borderline solution of semilinear parabolic equation with critical growth. Adv Differential Equations, 2013, 18(1/2): 147-177 [15] Fang F, Tan Z. Heat ffow for Dirichlet-to-Neumann operator with critical growth. Adv Math, 2018, 328: 217-247 [16] Gilbarg D, Trudinger Neil S.Elliptic Partial Differential Equations of Second Order. Berlin: Springer-Verlag, 1977 [17] Ladyenskaja O A, Solonnikov V A, Ural ceva N N. Linear and Quasilinear Equations of Parabolic Type. Providence, RI: American Mathematical Society, 1968 [18] Lions P L. The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann Inst H Poincaré Anal Non Linéaire,1984, 1(2): 109-145 [19] Lions P L. The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann Inst H Poincaré Anal Non Linéaire,1984, 1(4): 223-283 [20] Lions P L. The concentration-compactness principle in the calculus of variations. The limit case. I. Rev Mat Iberoamericana, 1985, 1(1): 145-201 [21] Lions P L. The concentration-compactness principle in the calculus of variations. The limit case. II. Rev Mat Iberoamericana, 1985, 1(2): 45-121 [22] Miraglio P, Valdinoci E. Energy asymptotics of a Dirichlet to Neumann problem related to water waves. Nonlinearity, 2020, 33(11): 5997-6025 [23] Payne L E, Sattinger D H. Saddle points and instability of nonlinear hyperbolic equations. Israel J Math, 1975, 22(3/4): 273-303 [24] Struwe M. A global compactness result for elliptic boundary value problems involving limiting nonlinearities. Math Z, 1984, 187(4): 511-517 [25] Tan J G. The Brezis-Nirenberg type problem involving the square root of the Laplacian. Calc Var Partial Differential Equations, 2011, 42(1/2): 21-41 [26] Tan J G. Positive solutions for non local elliptic problems. Discrete Contin Dyn Syst, 2013, 33(2): 837-859 [27] Tan Z. Global solution and blowup of semilinear heat equation with critical Sobolev exponent. Comm Partial Differential Equations, 2001, 26(3/4): 717-741 [28] Weissler Fred B. Local existence and nonexistence for semilinear parabolic equations in $L^p$. Indiana Univ Math J, 1980, 29(1): 79-102 [29] Xie M H, Tan Z. The global solution and blowup of a spatiotemporal EIT problem with a dynamical boundary condition. Acta Math Sci, 2023, 43B(4): 1881-1914 |