[1] Boudin L, Desvillettes L, Grandmont C, Moussa A. Global existence of solutions for the coupled Vlasov and Navier-Stokes equations. Differential and Integal Equations, 2009, 22(11/12): 1247-1271 [2] Bostan M, Goudon T. High-electric-field limit for the Vlasov-Maxwell-Fokker-Planck system. Ann Inst H Poincar$\acute{\rm e}$ Anal Non Lin$\acute{\rm e}$aire, 2008, 25(6): 1221-1251 [3] Bostan M, Goudon T. Low field regime for the relativistic Vlasov-Maxwell-Fokker-Planck system; the one and one half dimensional case. Kinet Relat Models,2008, 1(1): 139-170 [4] Bouchut F. Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions. J Funct Anal, 1993, 111(1): 239-258 [5] Carrillo J A, Duan R J, Moussa A. Global classical solutions close to equilibrium to the Vlasov-Euler-Fokker-Planck system. Kinet Relat Models, 2011, 4(1): 227-258 [6] Chae M, Kang K, Lee J. Global existence of weak and classical solutions for the Navier-Stokes-Vlasov-Fokker-Planck equations. J Differential Equations, 2011, 251(9): 2431-2465 [7] Carrillo J A, Soler J. On the initial value problem for the Vlasov-Poisson-Fokker-Planck system with initial data in $L^p$ spaces. Math Methods Appl Sci, 1995, 18(10): 825-839 [8] Degond P. Global existence of smooth solutions for the Vlasov-Fokker-Planck equations in 1 and 2 space dimensions. Ann Sci Ecole Norm Sup (4), 1986, 19(4): 519-542 [9] Domelevo K. Well-posedness of a kinetic model of dispersed two-phase flow with point-particles and stability of travelling waves. Discrete Contin Dyn Syst Ser B, 2002, 2(4): 591-607 [10] DiPerna R, Lions P L. Global weak solutions of kinetic equations. Rend Sem Mat Univ Politec Torino, 1988, 46(3): 259-288 [11] DiPerna R, Lions P L. Global weak solutions of Vlasov-Maxwell systems. Comm Pure Appl Math, 1989, 42(6): 729-757 [12] Duan R J, Liu S Q. Cauchy problem on the Vlasov-Fokker-Planck equation coupled with the compressible Euler equations through the friction force. Kinet Relat Models, 2013, 6(4): 687-700 [13] Domelevo K, Roquejoffre J M. Existence and stability of travelling wave solutions in a kinetic model of two-phase flows. Comm Partial Differential Equations, 1999, 24(1/2): 61-108 [14] Goudon T. Asymptotic problems for a kinetic model of two-phase flow. Proc Roy Soc Edinburgh Sect A, 2001, 131(6): 1371-1384 [15] Goudon T, He L, Moussa A, Zhang P. The Navier-Stokes-Vlasov-Fokker-Planck system near equilibrium. SIAM J Appl Math, 2010, 42(5): 2177-2202 [16] Goudon T, Jabin P E, Vasseur A. Hydrodynamic limit for the Vlasov-Navier-Stokes equations. I: Light particles regime. Indiana Univ Math J, 2004, 53(6): 1495-1515 [17] Goudon T, Jabin P E, Vasseur A. Hydrodynamic limit for the Vlasov-Navier-Stokes equations. II: Fine particles regime. Indiana Univ Math J, 2004, 53(6): 1517-1536 [18] Guo Y. The Vlasov-Maxwell-Boltzmann system near Maxwellians. Invent Math, 2003, 153(3): 593-630 [19] Hamdache K. Global existence and large time behaviour of solutions for the Vlasov-Stokes equations. Japan J Indust Appl Math, 1998, 15(1): 51-74 [20] Hsiao L, Li F C, Wang S. The combined quasineutral and inviscid limit of Vlasov-Maxwell-Fokker-Planck system. Acta Math Sin (Chinese Series), 2009, 52(4): 55-68 [21] Lai R. On the one-and-one-half dimensional relativistic Vlasov-Maxwell-Fokker-Planck system with non-vanishing viscosity. Math Methods Appl Sci, 1998, 21(14): 1287-1296 [22] Li F C, Mu Y M, Wang D H. Strong solutions to the compressible Navier-Stokes-Vlasov-Fokker-Planck equations: Global existence near the equilibrium and large time behavior. SIAM J Math Anal, 2017, 49(2): 984-1026 [23] Li H L, Liu S Q, Yang T. The Navier-Stokes-Vlasov-Fokker-Planck system in bounded domains. J Stat Phys, 2022, 186(3): 1-32 [24] Liu S Q, Ma X. The relativistic Vlasov-Maxwell-Fokker-Planck system in the whole space. Nonlinearity, 2020, 33(4): 1789-1811 [25] Mellet A, Vasseur A. Asymptotic analysis for a Vlasov-Fokker-Planck/compressible Navier-Stokes system of equations. Comm Math Phys, 2008, 281(3): 573-596 [26] Mellet A, Vasseur A. Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system of equations. Math Models Methods Appl Sci, 2007, 17(7): 1039-1063 [27] Nieto J, Poupaud F, Soler J. High-field limit of the Vlasov-Poisson-Fokker-Planck system. Arch Ration Mech Anal, 2001, 158(1): 29-59 [28] Strain R M. The Vlasov-Maxwell-Boltzmann system in the whole space. Comm Math Phys, 2006, 268(2): 543-567 [29] Strain R M, Guo Y. Almost exponential decay near Maxwellian. Comm Partial Differential Equations, 2006, 31(3): 417-429 [30] Victory Jr H D, O'Dwyer B P. On classical solutions of the Vlasov-Poisson-Fokker-Planck system. Indiana Univ Math J, 1990, 39(1): 105-156 [31] Wollman S. An existence and uniqueness theorem for the Vlasov-Maxwell system. Comm Pure Appl Math, 1984, 37(4): 457-462 [32] Yang T, Yu H J. Global classical solutions for the Vlasov-Maxwell-Fokker-Planck system. SIAM J Appl Math, 2010, 42(1): 459-488 |