|    
[1]  Folland G B. Harmonic Analysis in Phase Space. New Jersey: Princeton University Press,  1989 
  
 
[2]  Franchi  B. Rectifiability and perimeter in the Heisenberg group. Math Ann, 2001, 321: 479--531 
 
 
[3]  Gelbrich G.  Self-similar periodic tilings on the Heisenberg group. J  Lie Theory, 1994, 4: 31--37 
 
 
[4]  Gröchenig K,  Madych  W  R. Multiresolution analysis, Haar bases, and self-similar tilings of Rn.  IEEE  Transactions on Information Theory,  1992, 38: 556--568 
 
[5]  Jawerth  B,  Peng  L Z. Compactly supported orthogonal wavelets on the Heisenberg group. Beijing: Research Report No.45 of Insititute Mathematics of Peking University, 2001 
 
[6]  Kigami J.  Analysis on Fractals. Cambridge: Cambridge University Press, 2001 
 
[7]  Lawton  W.  Infinite convolution products & refinable distributions on Lie groups. Trans  Amer  Math Soc, 2000,  352: 2913--2936 
 
[8]  Liu H  P,  Peng L Z. Admissible wavelets associated with the Heisenberg group. Pacific J  Math, 1997, 180: 101--123 
 
[9]  Liu  H P,   Liu  Y,   Peng L Z,   et al. Cascade algorithm and multiresolution analysis  on the Heisenberg 
group. Progress in Natural Science, 2005, 15: 602--608 
 
[10]   Liu  H  P,   Liu Y.  Refinable functions on the Heisenberg group. Comm Pure  Appl  Anal, 2007, 6: 775--787 
 
[11]  Liu M J, Lu S Z. A weighted estimate of the Hormander multiplier on the Heisenberg group. Acta Math Sci, 2006, 26B(1): 134--144 
 
[12]  Liu Y, Yu M.  Lipschitz continuity of refinable functions on the Heisenberg group. J Math Anal Appl, 2008, 338: 1081--1091 
 
[13]  Peng L Z. Wavelets on the Heisenberg Group. Geometry and Nonlinear Partial Differential Equations, AMS/IP Studies in Advanced Mathematics, 2002, 29: 123--131 
 
[14]  Stein  E M.  Harmonic Analysis Real-Variable Methods, Orthogonality, and Oscillatory Integrals.  New Jersey: Princeton University Press, 1993 
 
[15]  Strichartz R S. Self-similarity on nilpotent Lie group. Contemporary Mathematics, 1992, 140: 123--157 
 
[16]  Strichartz R S. Wavelet and self-affine tilings. Constr  Approx, 1993, 9: 327--346 
 
[17]  Yang  Q. D. Multiresolution analysis on non-abelian locally compact groups  
[D]. University of Saskatchewan, 1999
  |