|   [1] Abdenur F, Bonatti C, Crovisier S. Nonuniform hyperbolicity of C1-generic diffeomorphisms (to appear in Israel J Math) 
 
[2] Arbieto A, Catalan T. Hyperbolicity in the Volume Preserving Scenario. arXiv: 1004.1664, Preprint, 2010 
 
[3] Arbieto A, Matheus C. A pasting lemma and some applications for conservative systems. Ergodic Theory and Dynamical Systems, 2007, 27: 1399–1417 
 
[4] Bonatti C, Crovisier S. Recurrence et generecite. Inv Math, 2004, 158: 33–104 
 
[5] Franks J. Necessary conditions for stability of diffeomorphisms. Trans Amer Math Soc, 1971, 158: 301–308 
 
[6] Lee K, Morivasu K, Sakai K. C1 stable shadowing diffeomorphisms. Disc Contin Dyn Syst, 2008, 22: 683–697 
 
[7] Ma˜né R. Ergodic Theory and Differentiable Dynamics. Springer-Verlag, 1987 
 
[8] Robinson C. Generic properties of conservative systems. Amer J Math, 1970, 92: 562–603 
 
[9] Robinson C. Dynamical systems: stability, symbolic dynamics, and chaos. CRC Press LLC, 1999 
 
[10] Sakai K, Sumi N, Yamamoto K. Diffeomorphisms satisfying the specification property. Proc Amer Math Soc, 2010, 138(1): 315–321 
 
[11] Sigmund K. Generic properties of invariant measures for Axiom-A diffeomorphisms. Invent Math, 1970, 11: 99–109 
 
[12] Tajbakhsh K, Lee K. Hyperbolicity of C1-stably shadowing homoclinic classes. Trends in Mathematics-NewSeries, 2008, 2: 79–82 
 
[13] Wen X, Gan S, Wen L. C1-stably shadowable chain component is hyperbolic. J Diff Eqns, 2009, 246: 340–57  |