|   [1] Br´ezis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm Pure Appl Math, 1983, 36: 437–477 
 
[2] Ambrosetti A, Struwe M. A note on problem −u = u+u|u|2−2. Manuscripta Math, 1986, 54: 373–379 
 
[3] Cerami G, Solimini S, Struwe M. Some existence results for superlinear elliptic boundary value problems involving critical exponents. J Funct Anal, 1986, 69: 289–306 
 
[4] Edmunds D, Fortunato D, Jannelli E. Critical exponents, critical dimensions and the biharmonic operator. Arch Rational Mech Anal, 1990, 112: 269–289 
 
[5] Gazzola F, Grunau H, Squassina M. Existence and nonexistence results for critical growth biharmonic elliptic equations. Calc Var Partial Differential Equations, 2003, 18: 117–143 
[6] Colasuonno F, Pucci P, Varga Cs. Multiple solutions for an eigenvalue problem involving p-Laplacian type operators. Nonlinear Anal, 2012, 75: 4496–4512 
 
[7] Noussair E, Swansom Ch, Yang J. Critical semilinear biharmonic equations in RN. Proc Roy Soc Edinburgh Sect A, 1992, 121: 139–148 
 
[8] Pucci P, Serrin J. Critical exponents and critical dimensions for polyharmonic operators. J Math Pures Appl, 1990, 69: 55–83 
 
[9] Gazzola F. Critical growth problem for polyharmonic operators. Proc Roy Soc Edinburgh Sect A, 1998, 128: 251–263 
 
[10] Grunau H. Positive solutions to semilinear polyharmonic Dirichlet problems involving critical Sobolev exponents. Calc Var Partial Differential Equations, 1995, 3: 243–252 
 
[11] Grunau H. On a conjecture of P. Pucci and J Serrin Analysis, 1996, 16: 399–403 
 
[12] Deng Yinbin. The existence and nodal character of the solutions in RN for semilinear elliptic equation involving critical Sobolev exponent. Acta Math Sci, 1989, 9(4): 385–402 
 
[13] Pucci P, Serrin J. A general variational identity. Indiana Univ Math J, 1986, 35: 681–703 
 
[14] Bernis F, Garcia-Azorero J, Peral I. Existence and multiplicity of the nontrival solutions in semilinear critical problem of fourth order. Adv Differential Equations, 1996, 1: 219–240 
 
[15] Autuori G, Colasuonno F, Pucci P. Lifespan estimates for solutions of polyharmonic Kirchhoff systems. Math Models Methods Appl, 2012, 22(2): 1150009 
 
[16] Colasuonno F, Pucci P. Multiplicity of solutions for p(x)-polyharmonic elliptic Kirchhoff equations. Non-linear Anal, 2011, 74: 5962–5974 
 
[17] Ge Y, Wei J, Zhou F. A critical elliptic problem for polyharmonic operators. J Funct Anal, 2011, 260: 2247–2282 
 
[18] Guo Y, Li B, Wei J. Large energy entire solutions for the Yamabe type problem of polyharmonic operator. J Differential Equations, 2013, 254: 199–228 
 
[19] Lam N, Lu G. Existence of nontrivial solutions to polyharmonic equations with subcritical and critical exponential growth. Discrete Contin. Dyn Syst, 2012, 32: 2187–2205 
 
[20] Wu T. On semilinear elliptic equations involving concave-convex nonlinearities and sign–changing weight function. J Math Anal Appl, 2006, 318: 253–270 
 
[21] Hsu T, Lin H. Multiple positive solutions for singular elliptic equations with concave–convex nonlinearities and sign-changing weights. Bound Value Probl, 2009, Art. ID 584203: 17 
 
[22] Brown K, Zhang Y. The Nehari manifold for a semilinear elliptic equation with a sign–changing weight function. J Differential Equations, 2003, 193: 481–499 
 
[23] Tarantello G. On nonhomogeneous elliptic equations involving critical Sobolev exponent. Ann Inst H Poincar´e Anal Non Lin´eaire, 1992, 9: 281–304 
 
[24] Deng Y, Wang L. Solutions for a class of singular nonlinear boundary value problem involving critical exponent. Acta Math Appl Sin Engl Ser, 2008, 24: 453–472 
 
[25] Swanson C. The best Sobolev constant. Appl Anal, 1992, 47: 227–239 
 
[26] Struwe M. Variational Methods-Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Springer-Verlag, 1990 
 
[27] Gazzola F, Ruf B. Lower order perturbations of critical growth nonlinearities in semilinear elliptic equations. Adv Differential Equations, 1997, 2: 555–572  |