|    
[1] Beirão da Veiga H. A new regularity class for the Navier-Stokes equations in Rn. Chin Ann Math Ser B, 1995,  16: 407--412 
 
[2] Fujita H, Kato T. On the Navier-Stokes initial value problem 1. Arch Rational Mech Anal, 1964, 16:  269--315 
 
[3] Gala S.  Multipliers spaces, Muckenhoupt weights and pseudo-differential operators.  J Math Anal Appl, 2006, 324:  1262--1273 
 
[4] Gala S. The Banach space of local measures and regularity criterion to the Navier-Stokes equations. New Zealand Journal of 
Mathematics, 2007, 36: 63--83 
 
[5] Giga Y. Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system. J Diff Eqs, 1986, 62:  186--212 
 
[6] Kozono H,  Yatsu N. Extension criterion via two-components of vorticity on strong solutions to the 3D Navier-Stokes equations. Math Z, 2004,  246:  55--68 
 
[7] Kozono H, Taniuchi Y. Bilinear estimates in BMO and the Navier-Stokes equations. Math Z, 2000, 235:  173--194 
 
[8] Kozono H, Ogawa T,  Taniuchi Y. The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear 
evolution equations. Math Z, 2002, 242: 251--278 
 
[9] Serrin J. On the interior regularity of weak solutions of the Navier-Stokes equations. Arch Rational Mech Anal, 1962, 9: 187--195 
 
[10] Yuan B, Zhang B. Blow-up criterion of strong solutions to the Navier-Stokes equations in Besov spaces with negative indices. J Differ Equ, 2007, 242: 1--10
  |