| 1 | Metzler R , Klafter J . The random walk's guide to anomalous diffusion:a fractional dynamics approach. Physics Reports, 2000, 339 (1): 1- 77 | | 2 | 陈文, 孙洪广, 李西成, 等. 力学与工程问题的分数阶导数建模. 北京: 科学出版社, 2010 | | 2 | Chen W , Sun H G , Li X C , et al. Fractional Derivative Modeling of Mechanics and Engineering Problems. Beijing: Science Press, 2010 | | 3 | Vladimir V , Uchaikin . Fractional Derivatives for Physicist and Engneers, Volume Ⅱ:Applications. New York: Springer, 2013 | | 4 | Li J , Guo B L . Parameter identification in fractional differential equations. Acta Mathematica Scientia, 2013, 33 (3): 855- 864 | | 5 | Guo B L , Pu X K , Huang F H . Fractional Partial Differential Equations and Their Numerical Solutions. Beijing: Science Press, 2015 | | 6 | 孙志忠, 高广花. 分数阶微分方程的有限差分方法. 北京: 科学出版社, 2015 | | 6 | Sun Z Z , Gao G H . Finite Difference Methods for Fractional Differential Equations. Beijing: Science Press, 2015 | | 7 | 覃平阳, 张晓丹. 空间-时间分数阶对流扩散方程的数值解法. 计算数学, 2008, 30 (3): 305- 310 | | 7 | Tan P Y , Zhang X D . Numerical solution of space-time fractional convection diffusion equation. Computational Mathematics, 2008, 30 (3): 305- 310 | | 8 | Tadjeran C , Meerschaert Mark M , Scheffler H P . A second-order accurate numerical approximation for the fraction diffusion equation. Journal of Computational Physics, 2006, 213 (1): 205- 213 | | 9 | Zhao Y , Zhang Y , Liu F , et al. Convergence and superconvergence of a fully-discrete scheme for multi-term time fractional diffusion equations. Computers and Mathematics with Applications, 2017, 73 (6): 1087- 1099 | | 10 | Chen C M , Liu F , Burrage K . Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation. Applied Mathematics and Computation, 2008, 198 (2): 754- 769 | | 11 | Gao G H , Sun Z Z . A compact finite difference scheme for the fractional sub-diffusion equations. Journal of Computational Physics, 2011, 230 (3): 586- 595 | | 12 | Liu F , Shen S , Anh V , et al. Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation. Anziam Journal, 2005, 46 (E): C488- C504 | | 13 | Shen S , Liu F , Anh V , et al. Implicit difference approximation for the time fractional diffusion equation. Journal of Applied Mathematics and Computing, 2006, 22 (3): 87- 99 | | 14 | Yuste S B . Weighted average finite difference methods for fractional diffusion equations. Journal of Computational Physics, 2004, 216 (1): 264- 274 | | 15 | Yuste S B , Acedo L . An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations. Siam Journal on Numerical Analysis, 2006, 42 (5): 1862- 1874 | | 16 | Lin Y , Xu C . Finite difference/spectral approximations for the time-fractional diffusion equation. Journal of Computational Physics, 2007, 225 (2): 1533- 1552 | | 17 | 张宝琳, 袁国兴, 刘兴平. 偏微分方程并行有限差分方法. 北京: 科学出版社, 1994 | | 17 | Zhang B L , Yuan G X , Liu X P . Parallel Finite Difference Methods for Partial Differential Equations. Beijing: Science Press, 1994 | | 18 | Zhang Y N , Sun Z Z , Wu H W . Error estimates of Crank-Nicolson-type difference schemes for the sub-diffusion equation. SIAM Journal on Numerical Analysis, 2011, 49 (6): 2302- 2322 |
|