| 1 | Arthi G , Park J H , Jung H Y . Existence and exponential stability for neutral stochastic integro-differential equations with impulses driven by a fractional Brownian motion. Commun Nonlinear Sci Numer Simul, 2016, 32: 145- 157 | | 2 | Chauhan A , Daba J . Local and global existence of mild solution to an impulsive fractional functional integro-differential equation with nonlocal condition. Commun Nonlinear Sci Numer Simul, 2014, 19 (4): 821- 829 | | 3 | Chadha A , Pandey D N . Existence results for an impulsive neutral stochastic fractional integro-differential equation with infinite delay. Nonlinear Anal, 2015, 128: 149- 175 | | 4 | Dabas J , Chauhan A . Existence and uniqueness of mild solution for an impulsive neutral fractional integrodifferential equations with infinity delay. Math Comput Modell, 2013, 57 (3): 754- 763 | | 5 | Ge F D , Zhou H C , Kou C H . Approximate controllability of semilinear evolution equations of fractional order with nonlocal and impulsive conditions via an approximating technique. Appl Math Comput, 2016, 275: 107- 120 | | 6 | Lin Z , Wang J R , Wei W . Multipoint BVPs for generalized impulsive fractional differential equations. Appl Math Comput, 2015, 258: 608- 616 | | 7 | Pierri M , O'Regan D , Rolnik V . Existence of solutions for semilinear differential equations with not instantaneous impulses. Appl Math Comput, 2013, 219: 6743- 6749 | | 8 | Tomar N K , Dabas J . Controllability of impulsive fractional order semilinear evolution equations with nonlocal conditions. J Non Evol Equ Appl, 2012, 5: 57- 67 | | 9 | Yang X J , Li C D , Huang T W , Song Q K . Mittag-Leffler stability analysis of nonlinear fractional-order systems with impulses. Appl Math Comput, 2017, 293: 416- 422 | | 10 | Yan Z M . Existence of solutions for nonlocal impulsive partial functional integrodifferential equations via fractional operators. J Comput Appl Math, 2011, 235 (8): 2252- 2262 | | 11 | Zhang G L , Song M H , Liu M Z . Exponential stability of the exact solutions and the numerical solutions for a class of linear impulsive delay differential equations. J Comput Appl Math, 2015, 285: 32- 44 | | 12 | Chen P Y , Zhang X P , Li Y X . Study on fractional non-autonomous evolution equations with delay. Comput Math Appl, 2017, 73 (5): 794- 803 | | 13 | Ouyang Z G . Existence and uniqueness of the solutions for a class of nonlinear fractional order partial differential equations with delay. Comput Math Appl, 2011, 61 (4): 860- 870 | | 14 | Zhu B , Liu L S , Wu Y H . Local and global existence of mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay. Appl Math Lett, 2016, 61: 73- 79 | | 15 | Zhu B , Liu L S , Wu Y H . Existence and uniqueness of global mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay. Comput Math Appl, 2016 | | 16 | Araya D , Lizama C . Almost automorphic mild solutions to fractional differential equations. Nonlinear Anal, 2008, 69 (11): 3692- 3705 | | 17 | Debbouche A , Baleanu D . Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems. Comput Math Appl, 2011, 62 (3): 1442- 1450 | | 18 | Pazy A . Semigroups of Linear Operators and Applications to Partial Differential Equations. New York: Applied Mathematical Sciences, 1983 | | 19 | Guo D J , Lakshamikantham V , Liu X Z . Nonlinear Integral Equations in Abstract Spaces. Dordrecht: Kluwer Academic, 1996 |
|