| 1 | Ambrosetti A , Colorado E . Bound and ground states of coupled nonlinear Schr?dinger equations. C R Math Acad Sci Paris, 2006, 342 (7): 453- 458 | | 2 | Bartsch T , Dancer N , Wang Z . A Liouville theorem, a priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system. Calc Var PDE, 2010, 37 (3/4): 345- 361 | | 3 | Dancer N , Wei J , Weth T . A priori bounds versus multiple existence of positive solutions for a nonlinear Schr?dinger system. Ann Inst H Poincaré Anal Non Linéaire, 2010, 27 (3): 953- 969 | | 4 | Liu Z , Wang Z . Multiple bound states of nonlinear Schr?dinger systems. Comm Math Phys, 2008, 282 (3): 721- 731 | | 5 | Lin T , Wei J . Ground state of $N$ coupled nonlinear Schr?dinger equations in $\mathbb{R} ^n$, $n \leq 3$. Comm Math Phys, 2005, 255 (3): 629- 653 | | 6 | Wei J , Weth T . Radial solutions and phase separation in a system of two coupled Schr?dinger equations. Arch Ration Mech Anal, 2008, 190 (1): 83- 106 | | 7 | Sato Y , Wang Z . On the multiple existence of semi-positive solutions for a nonlinear Schr?dinger system. Ann Inst H Poincaré Anal Non Linéaire, 2013, 30 (1): 1- 22 | | 8 | Maia L , Montefusco E , Pellacci B . Infinitely many nodal solutions for a weakly coupled nonlinear Schr?dinger system. Comm Comtemp Math, 2008, 10 (5): 651- 669 | | 9 | Wei J , Yao W . Uniqueness of positive solutions to some coupled nonlinear Schr?dinger equations. Comm Pure Appl Anal, 2012, 11 (3): 1003- 1011 | | 10 | Tavares H , Terracini S . Sign-changing solutions of competition diffusion elliptic systems and optimal partition problems. Ann I H Poincaré AN, 2012, 29: 279- 300 | | 11 | Zhang J, Zou W M. Infinitely many sign-changing solutions for a coupled Schr?dinger system with subcritical exponent. Submitted | | 12 | Noris B , Tavares H , Terracini S , et al. Uniform H?lder bounds for nonlinear Schr?dinger systems with strong competition. Comm Pure Appl Math, 2010, 63 (3): 267- 302 |
|