| 1 | Crandall M G , Rabinowitz P H . Bifurcation from simple eigenvalues. J Funct Anal, 1971, 8: 321- 340 |
| 2 | Dancer E N . On the indices of fixed points of mapping in cones and applications. J Math Anal Appl, 1983, 91: 131- 151 |
| 3 | Dancer E N . Bifurcation from simple eigenvalues and eigenvalues of geometric multiplicity one. Bull London Math Soc, 2002, 34: 533- 538 |
| 4 | Du Y H , Lou Y . Some uniqueness and exact multiplicity results for a predator-prey model. Trans Amer Math Soc, 1997, 6: 2443- 2475 |
| 5 | Du Y H , Lou Y . S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predatorprey model. J Differential Equations, 1998, 144: 390- 440 |
| 6 | Du Y H , Shi J P . A diffusive predator-prey model with a protection zone. J Differential Equations, 2006, 229: 63- 91 |
| 7 | Du Y H , Peng R , Wang M X . Effect of a protection zone in the diffusive Leslie predator-prey model. J Differential Equations, 2009, 246: 3932- 3956 |
| 8 | 李海侠. 一类食物链模型正解的稳定性和唯一性. 数学物理学报, 2017, 37A (6): 1094- 1104 |
| 8 | Li H X . Stability and uniqueness of positive solutions for a food-chain model. Acta Math Sci, 2017, 37A (6): 1094- 1104 |
| 9 | Li L . Coexistence theorems of steady states for predator-prey interacting systems. Trans Amer Math Soc, 1988, 305: 143- 166 |
| 10 | Li L . On positive solutions of a nonlinear equilibrium boundary values problem. J Math Anal Appl, 1989, 138: 537- 549 |
| 11 | López-Gómez J , Pardo R . Existence and uniqueness of coexistence states for the predator-prey LotkaVolterra model with diffusion on intervals. Differential Integral Equations, 1993, 6: 1025- 1031 |
| 12 | López-Gómez J . Spectral Theorey and Nonlinear Functional Analysis. Boca Raton, FL: Chapman and Hall/CRC, 2001 |
| 13 | Kadota T , Kuto K . Positive steady states for a prey-predator model with some nonlinear diffusion terms. J Math Anal Appl, 2006, 323: 1387- 1401 |
| 14 | Kuto K , Yamada Y . Multiple coexistence states for a prey-predator system with cross-diffusion. J Differential Equations, 2004, 197: 315- 348 |
| 15 | Kuto K . A strongly coupled diffusion effect on the stationary solution set of a prey-predator model. Adv Diff Eqns, 2007, 12: 145- 172 |
| 16 | Kuto K , Yamada Y . Coexistence problem for a prey-predator model with density-dependent diffusion. Nonlinear Anal, 2009, 71: 2223- 2232 |
| 17 | Kuto K , Yamada Y . Positive solutions for Lotka-Volterra competition systems with cross-diffsuion. Appl Anal, 2010, 89: 1037- 1066 |
| 18 | Lou Y , Ni W M . Diffusion, self-diffusion and cross-diffusion. J Differential Equations, 1996, 131: 79- 131 |
| 19 | Lou Y , Ni W M . Diffusion vs cross-diffusion:An elliptic approach. J Differential Equations, 1999, 154: 157- 190 |
| 20 | Lou Y , Ni W M , Wu Y P . On the global existence of a cross-diffusion system. Discrete Contin Dyn Syst, 1998, 4: 193- 203 |
| 21 | Lou Y , Ni W M , Yotsutani S . On a limiting system in the Lotka-Volterra competition with cross-diffsuion. Discrete Contin Dyn Syst, 2004, 10: 435- 458 |
| 22 | Nakashima K , Yamada Y . Positive steady states for prey-predator models with cross-diffusion. Adv Diff Eqns, 1996, 6: 1099- 1122 |
| 23 | Rabinowitz P H . Some global results for nonlinear eigenvalue problems. J Funct Anal, 1971, 7: 487- 513 |
| 24 | Wang Y X , Li W T . Stationary problem of a predator-prey system with nonlinear diffusion effects. Comput Math Appl, 2015, 70: 2102- 2124 |
| 25 | 袁海龙, 李艳玲. 一类具有Lotka-Volterra竞争模型共存解的存在性与稳定性. 数学物理学报, 2017, 36A (1): 173- 184 |
| 25 | Yuan H L , Li Y L . Existence and stability of coexistence states for a Lotka-Volterra competition model. Acta Math Sci, 2017, 36A (1): 173- 184 |