| 1 | Lotka A J . Contribution to the theory of periodic reaction. The Journal of Physical Chemistry, 1910, 14: 271- 274 | | 2 | Goel N S , Maitra S C , Montroll E W . On the volterra and other nonlinear models of interacting populations. Reviews of Modern Physics, 1971, 43: 231- 276 | | 3 | Lotka A J . Analytical note on certain rhythmic relations in organic systems. Proc Natl Acad Sci USA, 1920, 6 (7): 410- 415 | | 4 | Lotka A J . Elements of Physical Biology. New York: Dover Publications, 1956 | | 5 | Volterra V . Variazione e fluttuazioni de numero d'individui in specie animali conviventi. Mem Acad Lincei, 1926, 2: 31- 113 | | 6 | Volterra V . Variations and fluctuations of the number of individuals in animal species living together. J Cons Int Explor Mer, 1928, 3 (1): 351- 400 | | 7 | Egerton F N . Modeling nature:episodes in the history of population ecology, by Sharon E. Kingsland. American Historical Review, 1985, 92 (2): 183- 200 | | 8 | Gilpin M E . Do hares eat lynx?. The American Naturalist, 1973, 107: 727- 730 | | 9 | Jost C , Devulder G , Vucetich J A , et al. The wolves of Isle Royale display scale-invariant satiation and ratio-dependent predation on moose. Journal of Animal Ecology, 2005, 74: 809- 816 | | 10 | Yuan Lou , Wei Mingni , Shoji Yotsutani . On a limiting system in the Lotka-Volterra competition with cross-diffusion. Discrete and Continuous Dynamical Systems-Series A, 2004, 10: 435- 458 | | 11 | Liu Shaoping , Liao Xiaoxin . Permanence and persistence of time varying Lotka-Volterra systems. Acta Mathematica Scientia, 2006, 26B (1): 49- 58 | | 12 | 傅金波, 陈兰荪. 基于生态环境和反馈控制的多种群竞争系统的正周期解. 数学物理学报, 2017, 37A (3): 553- 561 | | 12 | Fu Jinbo , Chen Lansun . Positive periodic solution of multiple species comptition system with ecological environment and feedback controls. Acta Mathematica Scientia, 2017, 37A (3): 553- 561 | | 13 | Liu Xianning , Chen Lansun . Complex dynamics of Holling type Ⅱ Lotka-Volterra predator-prey system with impulsive perturbations on the predator. Chaos, Solitons & Fractals, 2003, 16 (2): 311- 320 | | 14 | 徐瑞, 陈兰荪. 具有时滞和基于比率的三种群捕食系统的持久性与全局渐近稳定性. 系统科学与数学, 2001, 4: 204- 212 | | 14 | Xu Rui , Chen Lansun . Persistence and global stability for three-species ratio-dependent predator-prey system with time delays. Acta Mathematica Scientia, 2001, 4: 204- 212 | | 15 | Lu Zhonghua , Chen Lansun . Analysis of the periodic Lotka-Volterra three-species mixed model. Pure and Applied Mathematics, 1995, 2: 81- 85 | | 16 | Fu Shengmao , Gao Haiyan , Cui Shangbin . Uniform boundedness and stability of solutions to the threespecies Lotka-Volterra competition model with self and cross-diffusion. Chinese Ann Math Ser A, 2006, 27 (3): 345- 356 | | 17 | Levin M . A Julia set model of field-directed morphogenesis:developmental biology and artificial life. Computer Applications in the Biosciences, 1994, 10: 85- 105 | | 18 | Sun Yuanyuan , Xu Rudan , Chen Lina , et al. Image compression and encryption scheme using fractal dictionary and Julia set. IET Image Processing, 2015, 9 (3): 173- 183 | | 19 | Shudo A , Ishii Y , Lkeda K S . Julia set describes quantum tunnelling in the presence of chaos. Journal of Physics A:Mathematical and Genera, 2002, 35: 225- 231 | | 20 | Sun Weihua , Zhang Yongping , Zhang Xin . Fractal analysis and control in the predator-prey model. International Journal of Computer Mathematics, 2017, 94 (4): 737- 746 |
|